دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: معادلات دیفرانسیل ویرایش: 5 نویسندگان: Martha L.L. Abell, James P. Braselton سری: ISBN (شابک) : 9780128149485 ناشر: Academic Press سال نشر: 2018 تعداد صفحات: 513 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Introductory Differential Equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل مقدماتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
معادلات دیفرانسیل مقدماتی، نسخه پنجم توضیحات قابل دسترسی و مسائل نمونه جدید و قوی ارائه می دهد. این منبع ارزشمند برای یک دوره ترم اول در معادلات دیفرانسیل معمولی مقدماتی (از جمله تبدیل های لاپلاس) مناسب است، اما برای درس دوم سری فوریه و مسائل ارزش مرزی و برای دانش آموزانی که هیچ پیشینه ای در این زمینه ندارند ایده آل است. این کتاب پایههایی را برای کمک به دانشآموزان در یادگیری نه تنها نحوه خواندن و درک معادلات دیفرانسیل، بلکه نحوه خواندن مطالب فنی در متون پیشرفتهتر را در حین پیشرفت تحصیلی فراهم میکند.
Introductory Differential Equations, Fifth Edition provides accessible explanations and new, robust sample problems. This valuable resource is appropriate for a first semester course in introductory ordinary differential equations (including Laplace transforms), but is also ideal for a second course in Fourier series and boundary value problems, and for students with no background on the subject. The book provides the foundations to assist students in learning not only how to read and understand differential equations, but also how to read technical material in more advanced texts as they progress through their studies.
Preface Technology Applications Style Features Pedagogical Features Examples "Think about it!" Technology Exercises Chapter Summary and Review Exercises Figures Historical Material Content Chapter 1: Introduction to Differential Equations 1.1 Introduction to Differential Equations: Vocabulary Exercises 1.1 1.2 A Graphical Approach to Solutions: Slope Fields and Direction Fields Systems of Ordinary Differential Equations and Direction Fields Relationship Between Systems of First Order and Higher Order Equations Exercises 1.2 Chapter 1 Summary: Essential Concepts and Formulas Chapter 1 Review Exercises Chapter 2: First Order Ordinary Differential Equations 2.1 Introduction to First Order Equations Some Differences Between Linear Equations and Nonlinear Equations Exercises 2.1 2.2 Separable Equations Equilibrium Solutions of dy/dt=f(y) Exercises 2.2 2.3 First Order Linear Equations: Undetermined Coefficients 2.3.1 General Solution of a First Order Linear Equation 2.3.2 Method of Undetermined Coefficients 2.3.2.1 Outline of the Method of Undetermined Coefficients to Solve y'+ky=q(t) Where k Is Constant and q(t) Is a Linear Combination of the Functions in (2.5) 2.3.2.2 Determining the Form of yp(t) (Step 2) Exercises 2.3 2.4 First Order Linear Equations: Integrating Factor Exercises 2.4 2.5 Exact Differential Equations Exercises 2.5 2.6 Substitution Methods and Special Equations Exercises 2.6 2.7 Numerical Methods for First Order Equations Euler's Method Improved Euler's Method Errors Runge-Kutta Method Computer Assisted Solutions using Commercial Software Exercises 2.7 Chapter 2 Summary: Essential Concepts and Formulas Chapter 2 Review Exercises Differential Equations at Work A. Modeling the Spread of a Disease B. Linear Population Model with Harvesting C. Logistic Model with Harvesting D. Logistic Model with Predation References Chapter 3: Applications of First Order Differential Equations 3.1 Population Growth and Decay The Logistic Equation Population Model with a Threshold Exercises 3.1 3.2 Newton's Law of Cooling and Related Problems Newton's Law of Cooling Mixture Problems Exercises 3.2 3.3 Free-Falling Bodies Exercises 3.3 Chapter 3 Summary: Essential Concepts and Formulas Chapter 3 Review Exercises Differential Equations at Work A. Mathematics of Finance B. Algae Growth C. Dialysis D. Antibiotic Production Chapter 4: Higher Order Equations 4.1 Second Order Equations: An Introduction The Second Order Linear Homogeneous Equation with Constant Coefficients The General Case Reduction of Order Exercises 4.1 4.2 Solutions of Second Order Linear Homogeneous Equations with Constant Coefficients Two Distinct Real Roots Complex Conjugate Roots Solving Second Order Equations with Constant Coefficients Exercises 4.2 4.3 Solving Second Order Linear Equations: Undetermined Coefficients Basic Theory Method of Undetermined Coefficients 4.3.0.1 Outline of the Method of Undetermined Coefficients to Solve 4.3.0.2 Determining the Form of yp(t) (Step 2) Exercises 4.3 4.4 Solving Second Order Linear Equations: Variation of Parameters 4.4.0.1 Summary of Variation of Parameters for Second Order Equations Exercises 4.4 Green's Functions 4.5 Solving Higher Order Linear Homogeneous Equations Basic Theory Constant Coefficients 4.5.0.1 Distinct Real Roots 4.5.0.2 Repeated Real Roots 4.5.0.3 Complex Conjugate Roots 4.5.0.4 Determining a General Solution of a Higher Order Equation Exercises 4.5 4.6 Solving Higher Order Linear Equations: Undetermined Coefficients and Variation of Parameters General Solution of a Nonhomogeneous Equation Undetermined Coefficients Variation of Parameters Exercises 4.6 4.7 Cauchy-Euler Equations Second Order Cauchy-Euler Equations Nonhomogeneous Cauchy-Euler Equations Higher Order Cauchy-Euler Equations Exercises 4.7 4.8 Power Series Solutions of Ordinary Differential Equations Series Solutions about Ordinary Points Legendre's Equation Exercises 4.8 4.9 Series Solutions of Ordinary Differential Equations Regular and Irregular Points and the Method of Frobenius The Gamma Function Bessel's Equation Exercises 4.9 Chapter 4 Summary: Essential Concepts and Formulas Chapter 4 Review Exercises Differential Equations at Work A. Testing for Diabetes B. Modeling the Motion of a Skier C. The Schrödinger Equation Chapter 5: Applications of Higher Order Differential Equations 5.1 Simple Harmonic Motion Exercises 5.1 5.2 Damped Motion Exercises 5.2 5.3 Forced Motion Exercises 5.3 5.4 Other Applications L-R-C Circuits Deflection of a Beam Exercises 5.4 5.5 The Pendulum Problem Exercises 5.5 Chapter 5 Summary: Essential Concepts and Formulas Chapter 5 Review Exercises Differential Equations at Work A. Rack-and-Gear Systems B. Soft, Hard, and Aging Springs C. Bodé Plots D. The Catenary E. The Wave Equation on a Circular Plate F. Duffing's Equation G. Suspending an Object from a Cable H. Can Resonance Impact Machinery? I. Inventory Management J. Heat Transfer Chapter 6: Systems of Differential Equations 6.1 Introduction Exercises 6.1 6.2 Review of Matrix Algebra and Calculus Basic Operations Determinants and Inverses Eigenvalues and Eigenvectors Matrix Calculus Exercises 6.2 6.3 An Introduction to Linear Systems Exercises 6.3 6.4 First Order Linear Homogeneous Systems with Constant Coefficients Distinct Real Eigenvalues Complex Conjugate Eigenvalues Alternate Method for Solving Initial Value Problems Repeated Eigenvalues Exercises 6.4 6.5 First Order Linear Nonhomogeneous Systems: Undetermined Coefficients and Variation of Parameters Undetermined Coefficients Variation of Parameters Exercises 6.5 6.6 Phase Portraits Real Distinct Eigenvalues Repeated Eigenvalues Complex Conjugate Eigenvalues Stability Exercises 6.6 6.7 Nonlinear Systems 6.7.0.1 Classification of Equilibrium Points of a Nonlinear System Exercises 6.7 6.8 Numerical Methods Euler's Method Runge-Kutta Method Computer Algebra Systems and Other Software Exercises 6.8 Chapter 6 Summary: Essential Concepts and Formulas Chapter 6 Review Exercises Differential Equations at Work A. Modeling a Fox Population in which Rabies is Present B. Controlling the Spread of a Disease C. FitzHugh-Nagumo Model D. An Agricultural Model E. Modeling the Spread of Dengue in Indonesia Chapter 7: Applications of Systems of Ordinary Differential Equations 7.1 Mechanical and Electrical Problems with First Order Linear Systems L-R-C Circuits with Loops L-R-C Circuit with One Loop L-R-C Circuit with Two Loops Spring-Mass Systems Exercises 7.1 7.2 Diffusion and Population Problems with First Order Linear Systems Diffusion Through a Membrane Mixture Problems Population Problems Exercises 7.2 7.3 Nonlinear Systems of Equations Biological Systems: Predator-Prey Interaction Physical Systems: Variable Damping Exercises 7.3 Chapter 7 Summary: Essential Concepts and Formulas Chapter 7 Review Exercises Differential Equations at Work A. Competing Species B. Food Chains C. Chemical Reactor D. Food Chains in a Chemostat 7.3.0.1 Simple Food Chain in a Chemostat E. The Rössler System and Attractor F. Cell Dynamics in Colon Cancer Chapter 8: Introduction to the Laplace Transform 8.1 The Laplace Transform: Preliminary Definitions and Notation Definition of the Laplace Transform Exponential Order, Jump Discontinuities and Piecewise-Continuous Functions Properties of the Laplace Transform Exercises 8.1 8.2 The Inverse Laplace Transform Exercises 8.2 8.3 Solving Initial-Value Problems with the Laplace Transform Exercises 8.3 8.4 Laplace Transforms of Several Important Functions 8.4.1 Piecewise Defined Functions: The Unit Step Function 8.4.2 Periodic Functions 8.4.3 Impulse Functions, The Delta Function Exercises 8.4 8.5 The Convolution Theorem 8.5.1 The Convolution Theorem 8.5.2 Integral and Integrodifferential Equations Exercises 8.5 8.6 Laplace Transform Methods for Solving Systems Exercises 8.6 8.7 Some Applications Using Laplace Transforms 8.7.1 L-R-C Circuits Revisited 8.7.2 Delay Differential Equations 8.7.3 Coupled Spring-Mass Systems 8.7.4 The Double Pendulum Exercises 8.7 Chapter 8 Summary: Essential Concepts and Formulas Chapter 8 Review Exercises Differential Equations at Work A. The Tautochrone B. Vibration Absorbers C. Airplane Wing D. Free Vibration of a Three-Story Building E. Control Systems Answers to Selected Exercises Exercises 1.1 Exercises 1.2 Chapter 1 Review Exercises Exercises 2.1 Exercises 2.2 Exercises 2.3 Exercises 2.4 Exercises 2.5 Exercises 2.6 Exercises 2.7 Chapter 2 Review Exercises Exercises 3.1 Exercises 3.2 Exercises 3.3 Chapter 3 Review Exercises Exercises 4.1 Exercises 4.2 Exercises 4.3 Exercises 4.4 Exercises 4.5 Exercises 4.6 Exercises 4.7 Exercises 4.8 Exercises 4.9 Chapter 4 Review Exercises Exercises 5.1 Exercises 5.2 Exercises 5.3 Exercises 5.4 Exercises 5.5 Chapter 5 Review Exercises Exercises 6.1 Exercises 6.2 Exercises 6.3 Exercises 6.4 Exercises 6.5 Exercises 6.6 Exercises 6.7 Exercises 6.8 Chapter 6 Review Exercises Exercises 7.1 Exercises 7.2 Exercises 7.3 Chapter 7 Review Exercises Exercises 8.1 Exercises 8.2 Exercises 8.3 Exercises 8.4 Exercises 8.5 Exercises 8.6 Exercises 8.7 Chapter 8 Review Exercises Bibliography Index