دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نويسي ویرایش: نویسندگان: Jason Brownlee سری: ناشر: v1.9 سال نشر: 2020 تعداد صفحات: 365 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
کلمات کلیدی مربوط به کتاب مقدمه ای در پیش بینی سری زمانی با پایتون - نحوه تهیه داده ها و توسعه مدل ها برای پیش بینی آینده: پایتون
در صورت تبدیل فایل کتاب Introduction to Time Series Forecasting with Python - How to Prepare Data and Develop Models to Predict the Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای در پیش بینی سری زمانی با پایتون - نحوه تهیه داده ها و توسعه مدل ها برای پیش بینی آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Copyright Welcome I Fundamentals Python Environment Why Python? Python Libraries for Time Series Python Ecosystem Installation Summary What is Time Series Forecasting? Time Series Time Series Nomenclature Describing vs. Predicting Components of Time Series Concerns of Forecasting Examples of Time Series Forecasting Summary Time Series as Supervised Learning Supervised Machine Learning Sliding Window Sliding Window With Multivariates Sliding Window With Multiple Steps Summary II Data Preparation Load and Explore Time Series Data Daily Female Births Dataset Load Time Series Data Exploring Time Series Data Summary Basic Feature Engineering Feature Engineering for Time Series Goal of Feature Engineering Minimum Daily Temperatures Dataset Date Time Features Lag Features Rolling Window Statistics Expanding Window Statistics Summary Data Visualization Time Series Visualization Minimum Daily Temperatures Dataset Line Plot Histogram and Density Plots Box and Whisker Plots by Interval Heat Maps Lag Scatter Plots Autocorrelation Plots Summary Resampling and Interpolation Resampling Shampoo Sales Dataset Upsampling Data Downsampling Data Summary Power Transforms Airline Passengers Dataset Square Root Transform Log Transform Box-Cox Transform Summary Moving Average Smoothing Moving Average Smoothing Data Expectations Daily Female Births Dataset Moving Average as Data Preparation Moving Average as Feature Engineering Moving Average as Prediction Summary III Temporal Structure A Gentle Introduction to White Noise What is a White Noise? Why Does it Matter? Is your Time Series White Noise? Example of White Noise Time Series Summary A Gentle Introduction to the Random Walk Random Series Random Walk Random Walk and Autocorrelation Random Walk and Stationarity Predicting a Random Walk Is Your Time Series a Random Walk? Summary Decompose Time Series Data Time Series Components Combining Time Series Components Decomposition as a Tool Automatic Time Series Decomposition Summary Use and Remove Trends Trends in Time Series Shampoo Sales Dataset Detrend by Differencing Detrend by Model Fitting Summary Use and Remove Seasonality Seasonality in Time Series Minimum Daily Temperatures Dataset Seasonal Adjustment with Differencing Seasonal Adjustment with Modeling Summary Stationarity in Time Series Data Stationary Time Series Non-Stationary Time Series Types of Stationary Time Series Stationary Time Series and Forecasting Checks for Stationarity Summary Statistics Augmented Dickey-Fuller test Summary IV Evaluate Models Backtest Forecast Models Model Evaluation Monthly Sunspots Dataset Train-Test Split Multiple Train-Test Splits Walk Forward Validation Summary Forecasting Performance Measures Forecast Error (or Residual Forecast Error) Mean Forecast Error (or Forecast Bias) Mean Absolute Error Mean Squared Error Root Mean Squared Error Summary Persistence Model for Forecasting Forecast Performance Baseline Persistence Algorithm Shampoo Sales Dataset Persistence Algorithm Steps Summary Visualize Residual Forecast Errors Residual Forecast Errors Daily Female Births Dataset Persistence Forecast Model Residual Line Plot Residual Summary Statistics Residual Histogram and Density Plots Residual Q-Q Plot Residual Autocorrelation Plot Summary Reframe Time Series Forecasting Problems Benefits of Reframing Your Problem Minimum Daily Temperatures Dataset Naive Time Series Forecast Regression Framings Classification Framings Time Horizon Framings Summary V Forecast Models A Gentle Introduction to the Box-Jenkins Method Autoregressive Integrated Moving Average Model Box-Jenkins Method Identification Estimation Diagnostic Checking Summary Autoregression Models for Forecasting Autoregression Autocorrelation Minimum Daily Temperatures Dataset Quick Check for Autocorrelation Autocorrelation Plots Persistence Model Autoregression Model Summary Moving Average Models for Forecasting Model of Residual Errors Daily Female Births Dataset Persistence Forecast Model Autoregression of Residual Error Correct Predictions with a Model of Residuals Summary ARIMA Model for Forecasting Autoregressive Integrated Moving Average Model Shampoo Sales Dataset ARIMA with Python Rolling Forecast ARIMA Model Summary Autocorrelation and Partial Autocorrelation Minimum Daily Temperatures Dataset Correlation and Autocorrelation Partial Autocorrelation Function Intuition for ACF and PACF Plots Summary Grid Search ARIMA Model Hyperparameters Grid Searching Method Evaluate ARIMA Model Iterate ARIMA Parameters Shampoo Sales Case Study Daily Female Births Case Study Extensions Summary Save Models and Make Predictions Process for Making a Prediction Daily Female Births Dataset Select Time Series Forecast Model Finalize and Save Time Series Forecast Model Make a Time Series Forecast Update Forecast Model Extensions Summary Forecast Confidence Intervals ARIMA Forecast Daily Female Births Dataset Forecast Confidence Interval Interpreting the Confidence Interval Plotting the Confidence Interval Summary VI Projects Time Series Forecast Projects 5-Step Forecasting Task Iterative Forecast Development Process Suggestions and Tips Summary Project: Monthly Armed Robberies in Boston Overview Problem Description Test Harness Persistence Data Analysis ARIMA Models Model Validation Extensions Summary Project: Annual Water Usage in Baltimore Overview Problem Description Test Harness Persistence Data Analysis ARIMA Models Model Validation Summary Project: Monthly Sales of French Champagne Overview Problem Description Test Harness Persistence Data Analysis ARIMA Models Model Validation Summary VII Conclusions How Far You Have Come Further Reading Applied Time Series Time Series Machine Learning Getting Help Contact the Author VIII Appendix Standard Time Series Datasets Shampoo Sales Dataset Minimum Daily Temperatures Dataset Monthly Sunspots Dataset Daily Female Births Dataset Airline Passengers Dataset Workaround for Saving ARIMA Models Daily Female Births Dataset Python Environment ARIMA Model Save Bug ARIMA Model Save Bug Workaround Summary