دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Fima C Klebaner
سری:
ISBN (شابک) : 1848168322, 9781848168329
ناشر: Icp
سال نشر: 2012
تعداد صفحات: 452
[453]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Introduction To Stochastic Calculus With Applications (3Rd Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمهای بر حساب تصادفی با کاربردها (نسخه سوم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
درمان حساب تصادفی را ارائه می دهد. این عنوان کاربردهای اصلی خود را در امور مالی، زیست شناسی و مهندسی می دهد. این تئوری حساب تصادفی و کاربردهای آن را به مخاطبانی ارائه میکند که فقط دانش اولیه حساب و احتمال را دارند.
Presents a treatment of stochastic calculus. This title gives its main applications in finance, biology and engineering. It presents the theory of stochastic calculus and its applications to an audience which possesses only a basic knowledge of calculus and probability.
Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Acknowledgments 1. Preliminaries From Calculus 1.1 Functions in Calculus Right- and Left-Continuous Functions 1.2 Variation of a Function Quadratic Variation 1.3 Riemann Integral and Stieltjes Integral Riemann Integral Stieltjes Integral Stieltjes Integral with Respect to Monotone Functions Particular Cases Impossibility of a Direct Definition of an Integral with Respect to Functions of Infinite Variation Integration by Parts Change of Variables 1.4 Lebesgue’s Method of Integration 1.5 Differentials and Integrals 1.6 Taylor’s Formula and Other Results Taylor’s Formula for Functions of One Variable Taylor’s Formula for Functions of Several Variables Lipschitz and Holder Conditions Growth Conditions Solution of First Order Linear Differential Equations Further Results on Functions and Integration 2. Concepts of Probability Theory 2.1 Discrete Probability Model Filtered Probability Space Sample Space Fields of Events Filtration Stochastic Processes Field Generated by a Random Variable Filtration Generated by a Stochastic Process Predictable Processes Stopping Times Probability Distribution of a Random Variable Expectation Conditional Probabilities and Expectations Conditional Expectation 2.2 Continuous Probability Model σ-Fields Borel σ-Field Probability Lebesgue Measure Random Variables σ-Field Generated by a Random Variable Distribution of a Random Variable Joint Distribution Transformation of Densities 2.3 Expectation and Lebesgue Integral Lebesgue–Stieltjes Integral Lebesgue Integral on the Line Properties of Expectation (Lebesgue Integral) Jumps and Probability Densities Decomposition of Distributions and FV Functions 2.4 Transforms and Convergence Convergence of Random Variables Convergence of Expectations 2.5 Independence and Covariance Independence Covariance 2.6 Normal (Gaussian) Distributions 2.7 Conditional Expectation Conditional Expectation and Conditional Distribution General Conditional Expectation Properties of Conditional Expectation 2.8 Stochastic Processes in Continuous Time Continuity and Regularity of Paths σ-Field Generated by a Stochastic Process Filtered Probability Space and Adapted Processes The Usual Conditions Stopping Times Fubini’s Theorem 3. Basic Stochastic Processes Introduction 3.1 Brownian Motion Defining Properties of Brownian Motion Transition Probability Functions Space Homogeneity Brownian Motion as a Gaussian Process Brownian Motion as a Random Series 3.2 Properties of Brownian Motion Paths Quadratic Variation of Brownian Motion Properties of Brownian Paths 3.3 Three Martingales of Brownian Motion 3.4 Markov Property of Brownian Motion Stopping Times and Strong Markov Property 3.5 Hitting Times and Exit Times 3.6 Maximum and Minimum of Brownian Motion 3.7 Distribution of Hitting Times 3.8 Reflection Principle and Joint Distributions 3.9 Zeros of Brownian Motion — Arcsine Law 3.10 Size of Increments of Brownian Motion Graphs of Some Functions of Brownian Motion 3.11 Brownian Motion in Higher Dimensions 3.12 Random Walk Martingales in Random Walks 3.13 Stochastic Integral in Discrete Time Stopped Martingales 3.14 Poisson Process Defining Properties of Poisson Process Variation and Quadratic Variation of the Poisson Process Poisson Process Martingales 3.15 Exercises 4. Brownian Motion Calculus 4.1 Definition of Ito Integral Ito Integral of Simple Processes Properties of the Ito Integral of Simple Adapted Processes Ito Integral of Adapted Processes 4.2 Ito Integral Process Martingale Property of the Ito Integral Quadratic Variation and Covariation of Ito Integrals 4.3 Ito Integral and Gaussian Processes 4.4 Ito’s Formula for Brownian Motion 4.5 Ito Processes and Stochastic Differentials Definition of Ito Processes Quadratic Variation of Ito Processes Integrals With Respect to Ito Processes 4.6 Ito’s Formula for Ito Processes Integration by Parts Ito’s Formula for Functions of Two Variables 4.7 Ito Processes in Higher Dimensions Ito’s Formula for Functions of Several Variables 4.8 Exercises 5. Stochastic Differential Equations 5.1 Definition of Stochastic Differential Equations (SDEs) Ordinary Differential Equations (ODEs) White Noise and SDEs A Physical Model of Diffusion and SDEs Stochastic Differential Equations Stochastic and Random Ordinary Differential Equations (ODEs) 5.2 Stochastic Exponential and Logarithm Stochastic Logarithm 5.3 Solutions to Linear SDEs Stochastic Exponential SDEs General Linear SDEs Langevin-Type SDE Brownian Bridge 5.4 Existence and Uniqueness of Strong Solutions Less Stringent Conditions for Strong Solutions 5.5 Markov Property of Solutions Transition Function 5.6 Weak Solutions to SDEs 5.7 Construction of Weak Solutions Canonical Space for Diffusions Probability Space ( , F, IF) Probability Measure Transition Function SDE on the Canonical Space is Satisfied Weak Solutions and the Martingale Problem 5.8 Backward and Forward Equations 5.9 Stratonovich Stochastic Calculus Integration by Parts: Stratonovich Product Rule Change of Variables: Stratonovich Chain Rule Conversion of Stratonovich SDEs into Ito SDEs 5.10 Exercises 6. Diffusion Processes 6.1 Martingales and Dynkin’s Formula 6.2 Calculation of Expectations and PDEs Backward PDE and E g(X(T ))|X(t) = x Feynman–Kac Formula 6.3 Time-Homogeneous Diffusions Ito’s Formula and Martingales 6.4 Exit Times from an Interval 6.5 Representation of Solutions of ODES 6.6 Explosion 6.7 Recurrence and Transience 6.8 Diffusion on an Interval 6.9 Stationary Distributions Invariant Measures 6.10 Multi-dimensional SDEs Bessel Process Ito’s Formula and Dynkin’s Formula Higher Order Random Differential Equations 6.11 Exercises 7. Martingales 7.1 Definitions Square Integrable Martingales 7.2 Uniform Integrability 7.3 Martingale Convergence 7.4 Optional Stopping Optional Stopping of Discrete Time Martingales Gambler’s Ruin Hitting Times in Random Walks 7.5 Localization and Local Martingales 7.6 Quadratic Variation of Martingales 7.7 Martingale Inequalities Application to Itˆo Integrals 7.8 Continuous Martingales — Change of Time Levy’s Characterization of Brownian Motion Change of Time for Martingales Change of Time in SDEs 7.9 Exercises 8. Calculus For Semimartingales 8.1 Semimartingales 8.2 Predictable Processes 8.3 Doob–Meyer Decomposition Doob’s Decomposition 8.4 Integrals with Respect to Semimartingales Stochastic Integral With Respect to Martingales Properties of Stochastic Integrals With Respect to Martingales Stochastic Integrals With Respect to Semimartingales Properties of Stochastic Integrals With Respect to Semimartingales 8.5 Quadratic Variation and Covariation Properties of Quadratic Variation Quadratic Variation of Stochastic Integrals 8.6 Ito’s Formula for Continuous Semimartingales Ito’s Formula for Functions of Several Variables 8.7 Local Times 8.8 Stochastic Exponential Stochastic Exponential of Martingales 8.9 Compensators and Sharp Bracket Process Sharp Bracket for Square Integrable Martingales Continuous Martingale Component of a Semimartingale Conditions for Existence of a Stochastic Integral Properties of the Predictable Quadratic Variation 8.10 Ito’s Formula for Semimartingales 8.11 Stochastic Exponential and Logarithm 8.12 Martingale (Predictable) Representations 8.13 Elements of the General Theory Remarks: Stochastic Sets Classification of Stopping Times 8.14 Random Measures and Canonical Decomposition Random Measure for a Single Jump Random Measure of Jumps and its Compensator in Discrete Time Random Measure of Jumps and its Compensator 8.15 Exercises 9. Pure Jump Processes 9.1 Definitions 9.2 Pure Jump Process Filtration Assumptions 9.3 Ito’s Formula for Processes of Finite Variation Stochastic Exponential Integration by Parts for Processes of Finite Variation 9.4 Counting Processes Point Process of a Single Jump Compensators of Counting Processes Renewal Process Stochastic Intensity Non-Homogeneous Poisson Processes Compensators of Pure Jump Processes 9.5 Markov Jump Processes Definitions The Compensator and the Martingale 9.6 Stochastic Equation for Jump Processes 9.7 Generators and Dynkin’s Formula 9.8 Explosions in Markov Jump Processes 9.9 Exercises 10. Change of Probability Measure 10.1 Change of Measure for Random Variables Change of Measure on a Discrete Probability Space Change of Measure for Normal Random Variables 10.2 Change of Measure on a General Space 10.3 Change of Measure for Processes Change of Drift in Diffusions 10.4 Change of Wiener Measure 10.5 Change of Measure for Point Processes 10.6 Likelihood Functions Likelihood for Discrete Observations Likelihood Ratios for Diffusions 10.7 Exercises 11. Applications in Finance: Stock and FX Options 11.1 Financial Derivatives and Arbitrage Equivalence Portfolio. Pricing by No Arbitrage Binomial Model Pricing by No Arbitrage 11.2 A Finite Market Model 11.3 Semimartingale Market Model Arbitrage in Continuous Time Models EMM Assumption Admissible Strategies Pricing of Claims Completeness of a Market Model 11.4 Diffusion and the Black–Scholes Model Black–Scholes Model Pricing a Call Option Pricing of Claims by a PDE. Replicating Portfolio Validity of the Assumptions Implied Volatility Stochastic Volatility Models 11.5 Change of Numeraire A General Option Pricing Formula SDEs Under a Change of Numeraire 11.6 Currency (FX) Options Options on Foreign Currency Options on Foreign Assets Struck in Foreign Currency Guaranteed Exchanged Rate (Quanto) Options 11.7 Asian, Lookback, and Barrier Options Asian Options Lookback Options Barrier Options 11.8 Exercises 12. Applications in Finance: Bonds, Rates, and Options 12.1 Bonds and the Yield Curve EMM Assumption 12.2 Models Adapted to Brownian Motion 12.3 Models Based on the Spot Rate 12.4 Merton’s Model and Vasicek’s Model Vasicek’s Model 12.5 Heath–Jarrow–Morton (HJM) Model EMM Assumption Bonds and Rates Under Q and the No-Arbitrage Condition 12.6 Forward Measures — Bond as a Numeraire Options on a Bond Forward Measures Forward Measure in HJM Distributions of the Bond in HJM with Deterministic Volatilities 12.7 Options, Caps, and Floors Cap and Caplets Caplet as a Put Option on the Bond Caplet Pricing in the HJM Model 12.8 Brace–Gatarek–Musiela (BGM) Model LIBOR Caplet in BGM SDEs for Forward LIBOR Under Different Measures Choice of Bond Volatilities 12.9 Swaps and Swaptions 12.10 Exercises 13. Applications in Biology 13.1 Feller’s Branching Diffusion 13.2 Wright–Fisher Diffusion 13.3 Birth–Death Processes Definition Stochastic Equation Generator of a Birth–Death Process Forward Kolmogorov Equations Stationary Distribution 13.4 Growth of Birth–Death Processes Growth of Birth–Death Processes with Linear Rates Growth of Processes with Stabilizing Reproduction 13.5 Extinction, Probability, and Time to Exit Probability of Extinction Mean Exit Time Exit Probabilities 13.6 Processes in Genetics Wright–Fisher Model Moran Model in Discrete Time Neutral drift Mutation Moran Model in Continuous Time Stochastic Equation and Its Limit Moran Model with Selective Advantage 13.7 Birth–Death Processes in Many Dimensions 13.8 Cancer Models Cancer Development Oncogene Model Two-Hit Model Tumor–Host Interaction 13.9 Branching Processes 13.10 Stochastic Lotka–Volterra Model Deterministic Lotka–Volterra System Stochastic Lotka–Volterra System Existence Deterministic (Fluid) Approximation 13.11 Exercises 14. Applications in Engineering and Physics 14.1 Filtering General Non-linear Filtering Model Filtering of Diffusions Kalman–Bucy Filter 14.2 Random Oscillators Non-linear Systems Duffing Equation Random Oscillator A System with a Cylindric Phase Plane 14.3 Exercises Solutions to Selected Exercises References Index