دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David J. Klotzkin
سری:
ISBN (شابک) : 3030245004, 9783030245009
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 369
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Introduction to Semiconductor Lasers for Optical Communications: An Applied Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر لیزرهای نیمه هادی برای ارتباطات نوری: یک رویکرد کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی ویرایش دوم به روز شده، درمان کامل و قابل دسترس لیزرهای نیمه هادی را از دیدگاه طراحی و مهندسی ارائه می دهد. این شامل هم فیزیک دستگاه ها و هم مهندسی، طراحی و آزمایش لیزرهای عملی است. مطالب به وضوح با مثال های ارائه شده ارائه شده است. خوانندگان کتاب به جنبه های دقیق تئوری، طراحی، ساخت و آزمایش این دستگاه ها پی خواهند برد و زمینه بسیار خوبی برای مطالعه بیشتر اپتوالکترونیک خواهند داشت.
This updated, second edition textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication and test of these devices and have an excellent background for further study of optoelectronics.
Preface Acknowledgements Contents 1 Introduction: The Basics of Optical Communications 1.1 Introduction 1.2 Introduction to Optical Communications 1.2.1 The Basics of Optical Communications 1.2.2 A Remarkable Coincidence 1.2.3 Optical Amplifiers 1.2.4 A Complete Technology 1.3 A Picture of Semiconductor Lasers 1.4 Organization of the Book 1.5 Summary and Learning Points 1.6 Questions and Problems 2 The Basics of Lasers 2.1 Introduction 2.2 Introduction to Lasers 2.2.1 Black Body Radiation 2.2.2 Statistical Thermodynamics Viewpoint of Black Body Radiation 2.2.3 Some Probability Distribution Functions 2.2.4 Density of States 2.2.5 Spectrum of a Black Body 2.3 Black Body Radiation: Einstein’s View 2.4 Implications for Lasing 2.5 Differences Between Spontaneous Emission, Stimulated Emission, and Lasing 2.6 Some Example of Laser Systems 2.6.1 Erbium-Doped Fiber Laser 2.6.2 HeNe Gas Laser 2.7 Summary and Learning Points 2.8 Questions 2.9 Problems 3 Semiconductors as Laser Materials 1: Fundamentals 3.1 Introduction 3.2 Energy Bands and Radiative Recombination 3.3 Semiconductor Laser Material System 3.4 Determining the Band Gap 3.4.1 Vegard’s Law: Ternary Compounds 3.4.2 Vegard’s Law: Quaternary Compounds 3.5 Lattice Constant, Strain, and Critical Thickness 3.5.1 Thin Film Epitaxial Growth 3.5.2 Strain and Critical Thickness 3.6 Direct and Indirect Bandgaps 3.6.1 Dispersion Diagrams 3.6.2 Features of Dispersion Diagrams 3.6.3 Direct and Indirect Band Gaps 3.6.4 Phonons 3.7 Summary and Learning Points 3.8 Questions 3.9 Problems 4 Semiconductors as Laser Materials 2: Density of States, Quantum Wells, and Gain 4.1 Introduction 4.2 Density of Electrons and Holes in a Semiconductor 4.2.1 Modifications to Eq. 4.9: Effective Mass 4.2.2 Modifications to Eq. 4.9: Including the Band Gap 4.3 Quantum Wells as Laser Materials 4.3.1 Energy Levels in an Ideal Quantum Well 4.3.2 Energy Levels in a Real Quantum Well 4.4 Density of States in a Quantum Well 4.5 Number of Carriers 4.5.1 Quasi-Fermi Levels 4.5.2 Number of Holes Versus Number of Electrons 4.6 Condition for Lasing 4.7 Optical Gain 4.8 Semiconductor Optical Gain 4.8.1 Joint Density of States 4.8.2 Occupancy Factor 4.8.3 Proportionality Constant 4.8.4 Linewidth Broadening 4.9 Summary and Learning Points 4.10 Learning Points 4.11 Questions 4.12 Problems 5 Semiconductor Laser Operation 5.1 Introduction 5.2 A Simple Semiconductor Laser 5.3 A Qualitative Laser Model 5.4 Absorption Loss 5.4.1 Band-to-Band and Free Carrier Absorption 5.4.2 Band-to-Impurity Absorption 5.5 Rate Equation Models 5.5.1 Carrier Lifetime 5.5.2 Consequences in Steady State 5.5.3 Units of Gain and Photon Lifetime 5.5.4 Slope Efficiency 5.6 Facet-Coated Devices 5.7 A Complete DC Analysis 5.8 Summary and Learning Points 5.9 Questions 5.10 Problems 6 Electrical Characteristics of Semiconductor Lasers 6.1 Introduction 6.2 Basics of p–n Junctions 6.2.1 Carrier Density as a Function of Fermi Level Position 6.2.2 Band Structure and Charges in p–n Junction 6.2.3 Currents in an Unbiased p–n Junction 6.2.3.1 Diffusion Current 6.2.3.2 Drift Current 6.2.4 Built-in Voltage 6.2.5 Width of Space Charge Region 6.3 Semiconductor p–n Junctions with Applied Bias 6.3.1 Applied Bias and Quasi-Fermi Levels 6.3.2 Recombination and Boundary Conditions 6.3.3 Minority Carrier Quasi-Neutral Region Diffusion Current 6.4 Semiconductor Laser p–n Junctions 6.4.1 Diode Ideality Factor 6.4.2 Clamping of Quasi-Fermi Levels at Threshold 6.5 Summary of Diode Characteristics 6.6 Metal Contact to Lasers 6.6.1 Definition of Energy Levels 6.6.2 Band Structures 6.7 Realization of Ohmic Contacts for Lasers 6.7.1 Current Conduction Through a Metal–Semiconductor Junction: Thermionic Emission 6.7.2 Current Conduction Through a Metal–Semiconductor Junction: Tunneling Current 6.7.3 Diode Resistance and Measurement of Contact Resistance 6.8 Summary and Learning Points 6.9 Questions 6.10 Problems 7 The Optical Cavity 7.1 Introduction 7.2 Chapter Outline 7.3 Overview of a Fabry-Perot Optical Cavity 7.4 Longitudinal Optical Modes Supported by a Laser Cavity 7.4.1 Optical Modes Supported by an Etalon: The Laser Cavity in 1D 7.4.2 Free Spectral Range in a Long Etalon 7.4.3 Free Spectral Range in a Fabry-Perot Laser Cavity 7.4.4 Optical Output of a Fabry-Perot Laser 7.4.5 Longitudinal Modes 7.5 Calculation of Gain from Optical Spectrum 7.6 Lateral Modes in an Optical Cavity 7.6.1 Importance of Lateral Modes in Real Lasers 7.6.2 Total Internal Reflection 7.6.3 Transverse Electric and Transverse Magnetic Modes 7.6.4 Quantitative Analysis of the Waveguide Modes 7.7 Two-Dimensional Waveguide Design 7.7.1 Confinement in Two Dimensions 7.7.2 Effective Index Method 7.7.3 Waveguide Design Targets for Lasers 7.8 Summary and Learning Points 7.9 Questions 7.10 Problems 8 Laser Modulation 8.1 Introduction: Digital and Analog Optical Transmission 8.2 Specifications for Digital Transmission 8.3 Small Signal Laser Modulation 8.3.1 Measurement of Small Signal Modulation 8.3.2 Small Signal Modulation of LEDs 8.3.3 Rate Equations for Lasers, Revisited 8.3.4 Derivation of Small Signal Homogenous Laser Response 8.3.5 Small Signal Laser Homogenous Response 8.4 Laser AC Current Modulation 8.4.1 Outline of the Derivation 8.4.2 Laser Modulation Measurement and Equation 8.4.3 Analysis of Laser Modulation Response 8.4.4 Demonstration of the Effects of τc 8.5 Limits to Laser Bandwidth 8.6 Relative Intensity Noise Measurements 8.7 Large Signal Modulation 8.7.1 Modeling the Eye Pattern 8.7.2 Considerations for Laser Systems 8.8 Summary and Conclusions 8.9 Learning Points 8.10 Questions 8.11 Problems 9 Distributed Feedback Lasers 9.1 A Single-Wavelength Laser 9.2 Need for Single-Wavelength Lasers 9.2.1 Realization of Single-Wavelength Devices 9.2.2 Narrow Gain Medium 9.2.3 High Free Spectral Range and Moderate Gain Bandwidth 9.2.4 External Bragg Reflectors 9.3 Distributed Feedback Lasers: Overview 9.3.1 Distributed Feedback Lasers: Physical Structure 9.3.2 Bragg Wavelength and Coupling 9.3.3 Unity Round Trip Gain 9.3.4 Gain Envelope 9.3.5 Distributed Feedback Lasers: Design and Fabrication 9.3.6 Distributed Feedback Lasers: Zero Net Phase 9.4 Experimental Data from Distributed Feedback Lasers 9.4.1 Influence of κ on Threshold Current and Slope Efficiency 9.4.2 Influence of Phase on Threshold Current 9.4.3 Influence of Phase on Cavity Power Distribution and Slope 9.4.4 Influence of Phase on Single-Mode Yield 9.5 Modeling of Distributed Feedback Lasers 9.6 Coupled Mode Theory 9.6.1 A Graphical Picture of Diffraction 9.6.2 Coupled Mode Theory in Distributed Feedback Laser 9.6.3 Measurement of κ 9.7 Inherently Single-Mode Lasers 9.8 Other Types of Gratings 9.9 Learning Points 9.10 Questions 9.11 Problems 10 Assorted Miscellany: Dispersion, Fabrication, and Reliability 10.1 Introduction 10.2 Dispersion and Single Mode Devices 10.3 Temperature Effects on Lasers 10.3.1 Temperature Effects on Wavelength 10.3.2 Temperature Effects on DC Properties 10.4 Laser Fabrication: Wafer Growth, Wafer Fabrication, Chip Fabrication, and Testing 10.4.1 Substrate Wafer Fabrication 10.4.2 Laser Design 10.4.3 Heterostructure Growth 10.4.3.1 Heterostructure Growth: Molecular Beam Epitaxy (MBE) 10.4.3.2 Heterostructure Growth: Metallorganic Chemical Vapor Deposition (MOCVD) 10.5 Grating Fabrication 10.5.1 Grating Fabrication 10.5.2 Grating Overgrowth 10.6 Wafer Fabrication 10.6.1 Wafer Fabrication: Ridge Waveguide 10.6.2 Wafer Fabrication: Buried Heterostructure Versus Ridge Waveguide 10.6.3 Wafer Fabrication: Vertical Cavity Surface-Emitting Lasers (VCSELS) 10.7 Chip Fabrication 10.8 Wafer Testing and Yield 10.9 Reliability 10.9.1 Individual Device Testing and Failure Modes 10.9.2 Definition of Failure 10.9.3 Arrhenius Dependence of Aging Rates 10.9.4 Analysis of Aging Rates, FITS, and MTBF 10.9.5 Electrostatic Discharge and Electrical Overstresses 10.9.6 Optical Overstress and Snap Test 10.10 Design for … 10.10.1 Design Tools 10.10.2 Design for High Speed Directly Modulated Lasers 10.10.3 Design for High Power 10.10.4 Design for Low Linewidth 10.10.5 Design Over Temperature 10.11 Summary and Learning Points 10.12 Questions 10.13 Problems 11 Laser Communication Systems I: Amplitude Modulated Systems 11.1 Introduction 11.2 Evolution of Optical Speed 11.3 Evolutionary Changes 11.4 Multiplexing 11.4.1 Wavelength Division Multiplexing 11.4.2 Wavelength Division Multiplexing and Demultiplexing 11.4.3 Optical Add Drop Multiplexors 11.5 Overview of Amplitude-Modulated Communication 11.5.1 Definitions for Amplitude Modulation Formats 11.5.2 Bits Versus Symbols 11.5.3 Pulse Amplitude Modulation 11.6 External Modulation 11.6.1 Quantum-Confined Stark Effect 11.6.2 Absorption Modulation Through the Quantum-Confined Stark Effect 11.6.3 Mach–Zehnder Modulator from Electooptic Materials 11.6.4 Phase Shifting with Plasma Effect 11.7 Laser Linewidth 11.7.1 Inherent Laser Linewidth 11.7.2 Linewidth Enhancement Factor 11.8 Direct Detection Receivers 11.9 Summary and Learning Points 11.10 Questions 11.11 Problems 12 Coherent Communication Systems 12.1 Introduction 12.2 Phasor Representation of Light 12.2.1 Reminder: Phasor Representation of Electrical Signals 12.2.2 Phasor Representation of Optical Signals 12.3 Phasor Descriptions of Coherent Optical Transmission 12.3.1 Binary (and More) Phase Shift Keying 12.3.2 Differential Phase Shift Keying 12.3.3 Quadrature Amplitude Modulation 12.3.4 Polarization Division Multiplexing 12.3.5 Polarization-Maintaining Fiber 12.4 Coherent Optical Transmitters 12.4.1 Binary (or More) Phase Shift Keying Transmitter 12.4.2 Quadrature Amplitude Modulation 12.5 Receivers 12.5.1 Reference Signal 12.5.2 Balanced Photodiode 12.5.3 A Full Coherent System 12.6 Coherent Transmission in Context 12.6.1 Comparison of Coherent and Incoherent (Amplitude Shift Keying) Systems 12.6.2 Communication Formats 12.7 Limits to Transmission Distance in Optical Systems 12.7.1 Optical Signal-to-Noise Ratio 12.7.2 Eye Diagram-Based Signal-to-Noise Ratio 12.7.3 Bit Error Rate Versus Transmission Format and Signal-to-Noise Ratio 12.8 Noise Sources 12.8.1 Relative Intensity Noise 12.8.2 Shot Noise 12.8.3 Erbium-Doped Fiber Amplifier Noise 12.8.4 Thermal Johnson Noise 12.8.5 Combination of Noise Sources 12.8.6 Other Noise Sources 12.9 Final Words 12.10 Summary and Learning Points 12.11 Questions 12.12 Problems Index