ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to Scanning Tunneling Microscopy

دانلود کتاب مقدمه ای بر میکروسکوپ اسکن تونل زنی

Introduction to Scanning Tunneling Microscopy

مشخصات کتاب

Introduction to Scanning Tunneling Microscopy

ویرایش: [3 ed.] 
نویسندگان:   
سری: Monographs on the Physics and Chemistry of Materials 69 
ISBN (شابک) : 9780198856559, 0198856555 
ناشر: Oxford University Press 
سال نشر: 2021 
تعداد صفحات: [523] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Introduction to Scanning Tunneling Microscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر میکروسکوپ اسکن تونل زنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر میکروسکوپ اسکن تونل زنی

این نسخه سوم یک نسخه کاملاً به روز شده و بهبود یافته از "کتاب مقدس" شناخته شده در این زمینه است.


توضیحاتی درمورد کتاب به خارجی

This third edition is a thoroughly updated and improved version of the recognized "Bible" of the field.



فهرست مطالب

Cover
Introducing to Scanning Tunneling Microscopy - Third Edition
Copyright
Dedication
Contents
List of Figures
List of Tables
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Gallery
Chapter 1 Overview
	1.1 The scanning tunneling microscope
	1.2 The concept of tunneling
		1.2.1 Transmission coefficient
		1.2.2 Semiclassical approximation
		1.2.3 The Landauer theory
		1.2.4 Tunneling conductance
	1.3 Probing electronic structure at atomic scale
		1.3.1 Experimental observations
		1.3.2 Origin of atomic resolution in STM
		1.3.3 Observing and mapping wavefunctions
	1.4 The atomic force microscope
		1.4.1 Atomic-scale imaging by AFM
		1.4.2 Role of covalent bonding in AFM imaging
	1.5 Illustrative applications
		1.5.1 Self-assembled molecules at a liquid-solid interface
			Role of solvents
			Bias voltage and electronic effects
		1.5.2 Electrochemistry STM
		1.5.3 Catalysis research
			Ni-Au catalyst for steam reforming
			Understand and improve the MoS2 catalyst
		1.5.4 Atom manipulation
Part I Principles
	Chapter 2 Tunneling Phenomenon
		2.1 The metal–insulator–metal tunneling junction
		2.2 The Bardeen theory of tunneling
			2.2.1 One-dimensional case
			2.2.2 Tunneling spectroscopy
			2.2.3 Energy dependence of tunneling matrix elements
			2.2.4 Asymmetry in tunneling spectrum
			2.2.5 Three-dimensional case
			2.2.6 Error estimation
			2.2.7 Wavefunction correction
			2.2.8 The transfer-Hamiltonian formalism
			2.2.9 The tunneling matrix
			2.2.10 Relation to the Landauer theory
		2.3 Inelastic tunneling
			2.3.1 Experimental facts
			2.3.2 Frequency condition
			2.3.3 Effect of finite temperature
		2.4 Spin-polarized tunneling
			2.4.1 General formalism
			2.4.2 The spin-valve effect
			2.4.3 Experimental observations
	Chapter 3 Tunneling Matrix Elements
		3.1 Introduction
		3.2 Tip wavefunctions
			3.2.1 General form
			3.2.2 Tip wavefunctions as Green’s functions
		3.3 The derivative rule: individual cases
			3.3.1 s-wave tip state
			3.3.2 p-wave tip states
			3.3.3 d-wave tip states
		3.4 The derivative rule: general case
		3.5 Tips with axial symmetry
			3.5.1 Lateral effects of tip states
	Chapter 4 Atomic Forces
		4.1 Van der Waals force
			4.1.1 The van der Waals equation of state
			4.1.2 The origin of van der Waals force
			4.1.3 Van der Waals force between a tip and a sample
		4.2 Pauli repulsion
		4.3 The ionic bond
		4.4 The chemical bond
			4.4.1 The concept of the chemical bond
			4.4.2 Bonding energy as a Bardeen surface integral
		4.5 The hydrogen molecular ion
			4.5.1 Van der Waals force
			4.5.2 Evaluation of the Bardeen surface integral
			4.5.3 Compare with the exact solution
		4.6 Chemical bonds of many-electron atoms
			4.6.1 The muffin-tin potential approximation
			4.6.2 The black-ball model of atoms
			4.6.3 Wavefunctions outside the atomic core
			4.6.4 Types of chemical bonds
				Chemical bonds from s-type atomic orbitals
			4.6.5 Comparing with experimental data
				Boron
				Carbon
				Nitrogen
				Oxygen
				Fluorine
				Neon
			4.6.6 A brief summary
		4.7 Chemical bond as resonance and tunneling
			4.7.1 Heisenberg’s model of resonance
			4.7.2 Resonance energy as tunneling matrix element
	Chapter 5 Atomic Forces and Tunneling
		5.1 The principle of equivalence
		5.2 An experimentally verifiable theory
			5.2.1 Case of elastic tunneling
			5.2.2 A measurable consequence
			5.2.3 Van der Waals force
			5.2.4 Repulsive force
		5.3 Experimental verifications
			5.3.1 Early experiments on metal surfaces
			5.3.2 Experiments with frequency-modulation AFM
			5.3.3 Experiments with static AFM
			5.3.4 Silicon tip and silicon sample
			5.3.5 Noncontact atomic force spectroscopy
		5.4 Mapping wavefunctions with AFM
			5.4.1 Case of an s-wave tip
			5.4.2 Case of a CO-functionalized tip
			5.4.3 Viewpoint of reciprocity
			5.4.4 An intuitive explanation
			5.4.5 Pauli repulsion and van der Waals force
		5.5 Threshold resistance in atom manipulation
		5.6 General theoretical arguments
			5.6.1 The double-well problem
			5.6.2 Canonical transformation of transfer Hamiltonian
			5.6.3 Diagonizing the tunneling matrix
		5.7 The Hofer–Fisher theory
	Chapter 6 Nanometer-Scale Imaging
		6.1 Types of STM and AFM images
		6.2 The Tersoff–Hamann model
			6.2.1 The concept
			6.2.2 The original derivation
			6.2.3 Profiles of surface reconstructions
			6.2.4 Extension to finite bias voltages
			6.2.5 Surface states: the concept
			6.2.6 Surface states: STM observations
			6.2.7 Heterogeneous surfaces
		6.3 Limitations of the Tersoff–Hamann model
	Chapter 7 Atomic-Scale Imaging
		7.1 Experimental facts
			7.1.1 Universality of atomic resolution
			7.1.2 Corrugation inversion
			7.1.3 Tip-state dependence
			7.1.4 Distance dependence of corrugation
		7.2 Intuitive explanations
			7.2.1 Sharpness of tip states
			7.2.2 Phase effect
			7.2.3 Arguments based on the reciprocity principle
		7.3 Analytic treatments
			7.3.1 A one-dimensional case
				s-wave tip state
				pz-tip state
			7.3.2 Surfaces with hexagonal symmetry
			7.3.3 Corrugation inversion
			7.3.4 Profiles of atomic states as seen by STM
			7.3.5 Independent-orbital approximation
		7.4 First-principles studies: tip electronic states
			7.4.1 W clusters as STM tip models
			7.4.2 DFT study of a W–Cu STM junction
			7.4.3 Transition-metal pyramidal tips
			7.4.4 Transition-metal atoms adsorbed on W slabs
		7.5 First-principles studies: the images
			7.5.1 Transition-metal surfaces
			7.5.2 Atomic corrugation and surface waves
			7.5.3 Atom-resolved AFM images
		7.6 Spin-polarized STM
		7.7 Chemical identification of surface atoms
		7.8 The principle of reciprocity
	Chapter 8 Imaging Wavefunctions
		8.1 Use of ultrathin insulating barriers
		8.2 Imaging wavefunctions with STM
			8.2.1 Imaging atomic wavefunctions
			8.2.2 Imaging molecular wavefunctions
			8.2.3 Imaging nodal structures
		8.3 Imaging wavefunctions with AFM
		8.4 Meaning of wavefunction observation
			8.4.1 Interpretations of wavefunctions
			8.4.2 Wavefunction as a physical field
			8.4.3 Born’s statistical interpretation
	Chapter 9 Nanomechanical Effects
		9.1 Mechanical stability of the tip-sample junction
			9.1.1 Experimental observations
			9.1.2 Condition of mechanical stability
			9.1.3 Relaxation and the apparent G ∼ z relation
		9.2 Mechanical effects on observed corrugations
			9.2.1 Soft surfaces
			9.2.2 Hard surfaces
		9.3 Force in tunneling-barrier measurements
Part II Instrumentation
	Part II: Instrumentation
		Chapter 10 Piezoelectric Scanner
			10.1 Piezoelectricity
				10.1.1 Piezoelectric effect
				10.1.2 Inverse piezoelectric effect
			10.2 Piezoelectric materials in STM and AFM
				10.2.1 Quartz
				10.2.2 Lead zirconate titanate ceramics
					Curie point
					Temperature dependence of piezoelectric constants
					Depoling field
					Mechanical quality number
					Coupling constants
					Aging
			10.3 Piezoelectric devices in STM and AFM
				10.3.1 Tripod scanner
				10.3.2 Bimorph
			10.4 The tube scanner
				10.4.1 Deflection
				10.4.2 In situ testing and calibration
				10.4.3 Resonant frequencies
					Stretching mode
					Bending mode
				10.4.4 Tilt compensation: the s-scanner
				10.4.5 Repolarizing a depolarized tube piezo
			10.5 The shear piezo
		Chapter 11 Vibration Isolation
			11.1 Basic concepts
			11.2 Environmental vibration
				11.2.1 Measurement method
				11.2.2 Vibration isolation of the foundation
			11.3 Vibrational immunity of STM
			11.4 Suspension-spring systems
				11.4.1 Analysis of two-stage systems
				11.4.2 Choice of springs
				11.4.3 Eddy-current damper
			11.5 Pneumatic systems
		Chapter 12 Electronics and Control
			12.1 Current amplifier
				12.1.1 Johnson noise and shot noise
				12.1.2 Frequency response
				12.1.3 Microphone effect
				12.1.4 Logarithmic amplifier
			12.2 Feedback circuit
				12.2.1 Steady-state response
				12.2.2 Transient response
			12.3 Computer interface
				12.3.1 Automatic approaching
		Chapter 13 Mechanical Design
			13.1 The louse
			13.2 The pocket-size STM
			13.3 The single-tube STM
			13.4 The Besocke-type STM: the beetle
			13.5 The walker
			13.6 The kangaroo
			13.7 The Inchworm
			13.8 The match
		Chapter 14 Tip Treatment
			14.1 Introduction
			14.2 Electrochemical tip etching
			14.3 Ex situ tip treatments
				14.3.1 Annealing
				14.3.2 Field evaporation and controlled deposition
			14.4 In situ tip treatments
				14.4.1 High-field treatment
				14.4.2 Controlled collision
			14.5 Tip treatment for spin-polarized STM
				14.5.1 Coating the tip with ferromagnetic materials
				14.5.2 Coating the tip with antiferromagnetic materials
				14.5.3 Controlled collision with magnetic surfaces
			14.6 Tip preparation for electrochemistry STM
			14.7 Tip functionalization
				14.7.1 Tip functionalization with Xe atom
				14.7.2 Tip functionalization with CO molecule
Part III Related Methods
	Part III: Related Methods
	Chapter 15 Scanning Tunneling Spectroscopy
		15.1 Electronics for scanning tunneling spectroscopy
		15.2 Nature of the observed tunneling spectra
		15.3 Tip treatment for spectroscopy studies
			15.3.1 Annealing
		15.4 Inelastic scanning tunneling spectroscopy
			15.4.1 Instrumentation
			15.4.2 Tip treatment for STM-IETS
			15.4.3 Effect of finite modulation voltage
			15.4.4 Experimental observations
		15.5 High-Tc superconductors
			15.5.1 Measuring the energy gap
			15.5.2 The Abrikosov flux lattice
	Chapter 16 Atomic Force Microscopy
		16.1 Static mode and dynamic mode
		16.2 Cantilevers
			16.2.1 Basic requirements
			16.2.2 Fabrication
		16.3 Static force detection
			16.3.1 Optical beam deflection
			16.3.2 Optical interferometry
		16.4 Tapping-mode AFM
			16.4.1 Acoustic actuation in liquids
			16.4.2 Magnetic actuation in liquids
		16.5 Noncontact AFM
			16.5.1 Case of small amplitude
			16.5.2 Case of finite amplitude
			16.5.3 Response function for frequency shift
			16.5.4 Second harmonics
			16.5.5 Average tunneling current
			16.5.6 Implementation
Appendix A Green’s Functions
Appendix B Real Spherical Harmonics
Appendix C Spherical Modified Bessel Functions
Appendix D Plane Groups and Invariant Functions
	D.1 A brief summary of plane groups
	D.2 Invariant functions
		Plane group pm
		Plane group p2gm
		Plane group p2mm
		Plane group p4mm
		Plane group p6mm
Appendix E Elementary Elasticity Theory
	E.1 Stress and strain
	E.2 Small deflection of beams
	E.3 Vibration of beams
	E.4 Torsion
	E.5 Helical springs
	E.6 Contact stress: The Hertz formulas
Bibliography
Index




نظرات کاربران