دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: C. Julian Chen
سری: Monographs on the Physics and Chemistry of Materials 69
ISBN (شابک) : 9780198856559, 0198856555
ناشر: Oxford University Press
سال نشر: 2021
تعداد صفحات: [523]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Introduction to Scanning Tunneling Microscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر میکروسکوپ اسکن تونل زنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه سوم یک نسخه کاملاً به روز شده و بهبود یافته از "کتاب مقدس" شناخته شده در این زمینه است.
This third edition is a thoroughly updated and improved version of the recognized "Bible" of the field.
Cover Introducing to Scanning Tunneling Microscopy - Third Edition Copyright Dedication Contents List of Figures List of Tables Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Gallery Chapter 1 Overview 1.1 The scanning tunneling microscope 1.2 The concept of tunneling 1.2.1 Transmission coefficient 1.2.2 Semiclassical approximation 1.2.3 The Landauer theory 1.2.4 Tunneling conductance 1.3 Probing electronic structure at atomic scale 1.3.1 Experimental observations 1.3.2 Origin of atomic resolution in STM 1.3.3 Observing and mapping wavefunctions 1.4 The atomic force microscope 1.4.1 Atomic-scale imaging by AFM 1.4.2 Role of covalent bonding in AFM imaging 1.5 Illustrative applications 1.5.1 Self-assembled molecules at a liquid-solid interface Role of solvents Bias voltage and electronic effects 1.5.2 Electrochemistry STM 1.5.3 Catalysis research Ni-Au catalyst for steam reforming Understand and improve the MoS2 catalyst 1.5.4 Atom manipulation Part I Principles Chapter 2 Tunneling Phenomenon 2.1 The metal–insulator–metal tunneling junction 2.2 The Bardeen theory of tunneling 2.2.1 One-dimensional case 2.2.2 Tunneling spectroscopy 2.2.3 Energy dependence of tunneling matrix elements 2.2.4 Asymmetry in tunneling spectrum 2.2.5 Three-dimensional case 2.2.6 Error estimation 2.2.7 Wavefunction correction 2.2.8 The transfer-Hamiltonian formalism 2.2.9 The tunneling matrix 2.2.10 Relation to the Landauer theory 2.3 Inelastic tunneling 2.3.1 Experimental facts 2.3.2 Frequency condition 2.3.3 Effect of finite temperature 2.4 Spin-polarized tunneling 2.4.1 General formalism 2.4.2 The spin-valve effect 2.4.3 Experimental observations Chapter 3 Tunneling Matrix Elements 3.1 Introduction 3.2 Tip wavefunctions 3.2.1 General form 3.2.2 Tip wavefunctions as Green’s functions 3.3 The derivative rule: individual cases 3.3.1 s-wave tip state 3.3.2 p-wave tip states 3.3.3 d-wave tip states 3.4 The derivative rule: general case 3.5 Tips with axial symmetry 3.5.1 Lateral effects of tip states Chapter 4 Atomic Forces 4.1 Van der Waals force 4.1.1 The van der Waals equation of state 4.1.2 The origin of van der Waals force 4.1.3 Van der Waals force between a tip and a sample 4.2 Pauli repulsion 4.3 The ionic bond 4.4 The chemical bond 4.4.1 The concept of the chemical bond 4.4.2 Bonding energy as a Bardeen surface integral 4.5 The hydrogen molecular ion 4.5.1 Van der Waals force 4.5.2 Evaluation of the Bardeen surface integral 4.5.3 Compare with the exact solution 4.6 Chemical bonds of many-electron atoms 4.6.1 The muffin-tin potential approximation 4.6.2 The black-ball model of atoms 4.6.3 Wavefunctions outside the atomic core 4.6.4 Types of chemical bonds Chemical bonds from s-type atomic orbitals 4.6.5 Comparing with experimental data Boron Carbon Nitrogen Oxygen Fluorine Neon 4.6.6 A brief summary 4.7 Chemical bond as resonance and tunneling 4.7.1 Heisenberg’s model of resonance 4.7.2 Resonance energy as tunneling matrix element Chapter 5 Atomic Forces and Tunneling 5.1 The principle of equivalence 5.2 An experimentally verifiable theory 5.2.1 Case of elastic tunneling 5.2.2 A measurable consequence 5.2.3 Van der Waals force 5.2.4 Repulsive force 5.3 Experimental verifications 5.3.1 Early experiments on metal surfaces 5.3.2 Experiments with frequency-modulation AFM 5.3.3 Experiments with static AFM 5.3.4 Silicon tip and silicon sample 5.3.5 Noncontact atomic force spectroscopy 5.4 Mapping wavefunctions with AFM 5.4.1 Case of an s-wave tip 5.4.2 Case of a CO-functionalized tip 5.4.3 Viewpoint of reciprocity 5.4.4 An intuitive explanation 5.4.5 Pauli repulsion and van der Waals force 5.5 Threshold resistance in atom manipulation 5.6 General theoretical arguments 5.6.1 The double-well problem 5.6.2 Canonical transformation of transfer Hamiltonian 5.6.3 Diagonizing the tunneling matrix 5.7 The Hofer–Fisher theory Chapter 6 Nanometer-Scale Imaging 6.1 Types of STM and AFM images 6.2 The Tersoff–Hamann model 6.2.1 The concept 6.2.2 The original derivation 6.2.3 Profiles of surface reconstructions 6.2.4 Extension to finite bias voltages 6.2.5 Surface states: the concept 6.2.6 Surface states: STM observations 6.2.7 Heterogeneous surfaces 6.3 Limitations of the Tersoff–Hamann model Chapter 7 Atomic-Scale Imaging 7.1 Experimental facts 7.1.1 Universality of atomic resolution 7.1.2 Corrugation inversion 7.1.3 Tip-state dependence 7.1.4 Distance dependence of corrugation 7.2 Intuitive explanations 7.2.1 Sharpness of tip states 7.2.2 Phase effect 7.2.3 Arguments based on the reciprocity principle 7.3 Analytic treatments 7.3.1 A one-dimensional case s-wave tip state pz-tip state 7.3.2 Surfaces with hexagonal symmetry 7.3.3 Corrugation inversion 7.3.4 Profiles of atomic states as seen by STM 7.3.5 Independent-orbital approximation 7.4 First-principles studies: tip electronic states 7.4.1 W clusters as STM tip models 7.4.2 DFT study of a W–Cu STM junction 7.4.3 Transition-metal pyramidal tips 7.4.4 Transition-metal atoms adsorbed on W slabs 7.5 First-principles studies: the images 7.5.1 Transition-metal surfaces 7.5.2 Atomic corrugation and surface waves 7.5.3 Atom-resolved AFM images 7.6 Spin-polarized STM 7.7 Chemical identification of surface atoms 7.8 The principle of reciprocity Chapter 8 Imaging Wavefunctions 8.1 Use of ultrathin insulating barriers 8.2 Imaging wavefunctions with STM 8.2.1 Imaging atomic wavefunctions 8.2.2 Imaging molecular wavefunctions 8.2.3 Imaging nodal structures 8.3 Imaging wavefunctions with AFM 8.4 Meaning of wavefunction observation 8.4.1 Interpretations of wavefunctions 8.4.2 Wavefunction as a physical field 8.4.3 Born’s statistical interpretation Chapter 9 Nanomechanical Effects 9.1 Mechanical stability of the tip-sample junction 9.1.1 Experimental observations 9.1.2 Condition of mechanical stability 9.1.3 Relaxation and the apparent G ∼ z relation 9.2 Mechanical effects on observed corrugations 9.2.1 Soft surfaces 9.2.2 Hard surfaces 9.3 Force in tunneling-barrier measurements Part II Instrumentation Part II: Instrumentation Chapter 10 Piezoelectric Scanner 10.1 Piezoelectricity 10.1.1 Piezoelectric effect 10.1.2 Inverse piezoelectric effect 10.2 Piezoelectric materials in STM and AFM 10.2.1 Quartz 10.2.2 Lead zirconate titanate ceramics Curie point Temperature dependence of piezoelectric constants Depoling field Mechanical quality number Coupling constants Aging 10.3 Piezoelectric devices in STM and AFM 10.3.1 Tripod scanner 10.3.2 Bimorph 10.4 The tube scanner 10.4.1 Deflection 10.4.2 In situ testing and calibration 10.4.3 Resonant frequencies Stretching mode Bending mode 10.4.4 Tilt compensation: the s-scanner 10.4.5 Repolarizing a depolarized tube piezo 10.5 The shear piezo Chapter 11 Vibration Isolation 11.1 Basic concepts 11.2 Environmental vibration 11.2.1 Measurement method 11.2.2 Vibration isolation of the foundation 11.3 Vibrational immunity of STM 11.4 Suspension-spring systems 11.4.1 Analysis of two-stage systems 11.4.2 Choice of springs 11.4.3 Eddy-current damper 11.5 Pneumatic systems Chapter 12 Electronics and Control 12.1 Current amplifier 12.1.1 Johnson noise and shot noise 12.1.2 Frequency response 12.1.3 Microphone effect 12.1.4 Logarithmic amplifier 12.2 Feedback circuit 12.2.1 Steady-state response 12.2.2 Transient response 12.3 Computer interface 12.3.1 Automatic approaching Chapter 13 Mechanical Design 13.1 The louse 13.2 The pocket-size STM 13.3 The single-tube STM 13.4 The Besocke-type STM: the beetle 13.5 The walker 13.6 The kangaroo 13.7 The Inchworm 13.8 The match Chapter 14 Tip Treatment 14.1 Introduction 14.2 Electrochemical tip etching 14.3 Ex situ tip treatments 14.3.1 Annealing 14.3.2 Field evaporation and controlled deposition 14.4 In situ tip treatments 14.4.1 High-field treatment 14.4.2 Controlled collision 14.5 Tip treatment for spin-polarized STM 14.5.1 Coating the tip with ferromagnetic materials 14.5.2 Coating the tip with antiferromagnetic materials 14.5.3 Controlled collision with magnetic surfaces 14.6 Tip preparation for electrochemistry STM 14.7 Tip functionalization 14.7.1 Tip functionalization with Xe atom 14.7.2 Tip functionalization with CO molecule Part III Related Methods Part III: Related Methods Chapter 15 Scanning Tunneling Spectroscopy 15.1 Electronics for scanning tunneling spectroscopy 15.2 Nature of the observed tunneling spectra 15.3 Tip treatment for spectroscopy studies 15.3.1 Annealing 15.4 Inelastic scanning tunneling spectroscopy 15.4.1 Instrumentation 15.4.2 Tip treatment for STM-IETS 15.4.3 Effect of finite modulation voltage 15.4.4 Experimental observations 15.5 High-Tc superconductors 15.5.1 Measuring the energy gap 15.5.2 The Abrikosov flux lattice Chapter 16 Atomic Force Microscopy 16.1 Static mode and dynamic mode 16.2 Cantilevers 16.2.1 Basic requirements 16.2.2 Fabrication 16.3 Static force detection 16.3.1 Optical beam deflection 16.3.2 Optical interferometry 16.4 Tapping-mode AFM 16.4.1 Acoustic actuation in liquids 16.4.2 Magnetic actuation in liquids 16.5 Noncontact AFM 16.5.1 Case of small amplitude 16.5.2 Case of finite amplitude 16.5.3 Response function for frequency shift 16.5.4 Second harmonics 16.5.5 Average tunneling current 16.5.6 Implementation Appendix A Green’s Functions Appendix B Real Spherical Harmonics Appendix C Spherical Modified Bessel Functions Appendix D Plane Groups and Invariant Functions D.1 A brief summary of plane groups D.2 Invariant functions Plane group pm Plane group p2gm Plane group p2mm Plane group p4mm Plane group p6mm Appendix E Elementary Elasticity Theory E.1 Stress and strain E.2 Small deflection of beams E.3 Vibration of beams E.4 Torsion E.5 Helical springs E.6 Contact stress: The Hertz formulas Bibliography Index