دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Rand Wilcox
سری:
ISBN (شابک) : 9780128047330
ناشر: Elsevier
سال نشر: 2017
تعداد صفحات: 787
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Introduction to Robust Estimation and Hypothesis Testing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر برآورد قوی و آزمون فرضیه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای بر تخمین قوی و آزمایش فرضیه، ویرایش چهارم، یک "نحوه" در استفاده از روش های قوی با استفاده از نرم افزارهای موجود است. روشهای قوی مدرن، تکنیکهای بهبود یافتهای را برای برخورد با نقاط پرت، انحنای توزیع اریب و ناهمسانی ارائه میکنند که میتواند دستاوردهای قابلتوجهی در قدرت و همچنین درک عمیقتر، دقیقتر و ظریفتر از دادهها را فراهم کند. از آخرین نسخه، پیشرفت ها و پیشرفت های زیادی وجود داشته است. آنها شامل تکنیک های جدید برای مقایسه گروه ها و اندازه گیری اندازه اثر و همچنین روش های جدید برای مقایسه چندک هستند. بسیاری از روش های رگرسیون جدید اضافه شده اند که شامل تکنیک های پارامتریک و ناپارامتریک می شوند. روش های مربوط به ANCOVA به طور قابل توجهی گسترش یافته است. دیدگاههای جدید مربوط به توزیعهای گسسته با فضای نمونه نسبتاً کوچک و همچنین نتایج جدید مربوط به تابع تغییر توصیف شدهاند. اهمیت عملی این روش ها با استفاده از داده های مطالعات دنیای واقعی نشان داده شده است. بسته R نوشته شده برای این کتاب اکنون شامل بیش از 1200 تابع است.
Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a ‘how-to’ on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions.
Preface 1 Introduction 1.1 Problems with Assuming Normality 1.2 Transformations 1.3 The Influence Curve 1.4 The Central Limit Theorem 1.5 Is the ANOVA F Robust? 1.6 Regression 1.7 More Remarks 1.8 R Software 1.9 Some Data Management Issues 1.9.1 Eliminating Missing Values 1.10 Data Sets 2 A Foundation for Robust Methods 2.1 Basic Tools for Judging Robustness 2.1.1 Qualitative Robustness 2.1.2 Infinitesimal Robustness 2.1.3 Quantitative Robustness 2.2 Some Measures of Location and Their Influence Function 2.2.1 Quantiles 2.2.2 The Winsorized Mean 2.2.3 The Trimmed Mean 2.2.4 M-Measures of Location 2.2.5 R-Measures of Location 2.3 Measures of Scale 2.4 Scale Equivariant M-Measures of Location 2.5 Winsorized Expected Values 3 Estimating Measures of Locationand Scale 3.1 A Bootstrap Estimate of a Standard Error 3.1.1 R Function bootse 3.2 Density Estimators 3.2.1 Silverman\'s Rule of Thumb 3.2.2 Rosenblatt\'s Shifted Histogram 3.2.3 The Expected Frequency Curve 3.2.4 An Adaptive Kernel Estimator 3.2.5 R Functions skerd, kerSORT, kerden, kdplot, rdplot, akerd and splot 3.3 The Sample Trimmed Mean 3.3.1 R Functions mean, tmean and lloc 3.3.2 Estimating the Standard Error of the Trimmed Mean 3.3.3 Estimating the Standard Error of the Sample Winsorized Mean 3.3.4 R Functions winmean, winvar, trimse and winse 3.3.5 Estimating the Standard Error of the Sample Median 3.3.6 R Function msmedse 3.4 The Finite Sample Breakdown Point 3.5 Estimating Quantiles 3.5.1 Estimating the Standard Error of the Sample Quantile 3.5.2 R Function qse 3.5.3 The Maritz-Jarrett Estimate of the Standard Error of xq 3.5.4 R Function mjse 3.5.5 The Harrell-Davis Estimator 3.5.6 R Functions qest and hd 3.5.7 A Bootstrap Estimate of the Standard Error of thetaq 3.5.8 R Function hdseb 3.6 An M-Estimator of Location 3.6.1 R Function mad 3.6.2 Computing an M-Estimator of Location 3.6.3 R Functions mest 3.6.4 Estimating the Standard Error of the M-Estimator 3.6.5 R Function mestse 3.6.6 A Bootstrap Estimate of the Standard Error of µm 3.6.7 R Function mestseb 3.7 One-Step M-Estimator 3.7.1 R Function onestep 3.8 W-Estimators 3.8.1 Tau Measure of Location 3.8.2 R Function tauloc 3.8.3 Zuo\'s Weighted Estimator 3.9 The Hodges-Lehmann Estimator 3.10 Skipped Estimators 3.10.1 R Functions mom and bmean 3.11 Some Comparisons of the Location Estimators 3.12 More Measures of Scale 3.12.1 The Biweight Midvariance 3.12.2 R Function bivar 3.12.3 The Percentage Bend Midvariance and Tau Measure of Variation 3.12.4 R Functions pbvar, tauvar 3.12.5 The Interquartile Range 3.12.6 R Functions idealf and idrange 3.13 Some Outlier Detection Methods 3.13.1 Rules Based on Means and Variances 3.13.2 A Method Based on the Interquartile Range 3.13.3 Carling\'s Modification 3.13.4 A MAD-Median Rule 3.13.5 R Functions outbox, out and boxplot 3.13.6 R Functions adjboxout and adjbox 3.14 Exercises 4 Confidence Intervals in theOne-Sample Case 4.1 Problems when Working with Means 4.2 The g-and-h Distribution Multivariate g-and-h Distributions 4.2.1 R Functions ghdist, rmul, rngh and ghtrim 4.3 Inferences About the Trimmed and Winsorized Means 4.3.1 R Functions trimci, winci and D.akp.effect 4.4 Basic Bootstrap Methods 4.4.1 The Percentile Bootstrap Method 4.4.2 R Functions onesampb and hdpb 4.4.3 Bootstrap-t Method 4.4.4 Bootstrap Methods when Using a Trimmed Mean 4.4.5 Singh\'s Modification 4.4.6 R Functions trimpb and trimcibt 4.5 Inferences About M-Estimators 4.5.1 R Functions mestci and momci 4.6 Confidence Intervals for Quantiles 4.6.1 Beware of Tied Values when Making Inferences About Quantiles 4.6.2 A Modification of the Distribution-Free Method for the Median 4.6.3 R Functions qmjci, hdci, sint, sintv2, qci, qcipb and qint 4.7 Empirical Likelihood 4.7.1 Bartlett Corrected Empirical Likelihood 4.8 Concluding Remarks 4.9 Exercises 5 Comparing Two Groups 5.1 The Shift Function 5.1.1 The Kolmogorov-Smirnov Test 5.1.2 R Functions ks, kssig, kswsig, and kstiesig 5.1.3 The B and W Band for the Shift Function 5.1.4 R Functions sband and wband 5.1.5 Confidence Band for Specified Quantiles Method Q1 Method Q2 5.1.6 R Functions shifthd, qcomhd, qcomhdMC and q2gci 5.1.7 R Functions g2plot and g5plot 5.2 Student\'s t Test 5.3 Comparing Medians and Other Trimmed Means Yuen\'s Method Comparing Medians 5.3.1 R Functions yuen and msmed 5.3.2 A Bootstrap-t Method for Comparing Trimmed Means 5.3.3 R Functions yuenbt and yhbt 5.3.4 Measuring Effect Size A Standardized Difference Explanatory Power A Classification Perspective A Probabilistic Measure of Effect Size 5.3.5 R Functions akp.effect, yuenv2, ees.ci, med.effect and qhat 5.4 Inferences Based on a Percentile Bootstrap Method 5.4.1 Comparing M-Estimators 5.4.2 Comparing Trimmed Means and Medians 5.4.3 R Functions trimpb2, pb2gen, m2ci, medpb2 and M2gbt 5.5 Comparing Measures of Scale 5.5.1 Comparing Variances 5.5.2 R Function comvar2 5.5.3 Comparing Biweight Midvariances 5.5.4 R Function b2ci 5.6 Permutation Tests 5.6.1 R Function permg 5.7 Rank-Based Methods and a Probabilistic Measure of Effect Size 5.7.1 The Cliff and Brunner-Munzel Methods Cliff\'s Method Brunner-Munzel Method 5.7.2 R Functions cid, cidv2, bmp, wmwloc, wmwpb and loc2plot 5.8 Comparing Two Independent Binomial and Multinomial Distributions 5.8.1 Storer-Kim Method 5.8.2 Beal\'s Method 5.8.3 KMS Method 5.8.4 R Functions twobinom, twobici, bi2KMS, bi2KMSv2 and bi2CR 5.8.5 Comparing Discrete (Multinomial) Distributions 5.8.6 R Functions binband, splotg2, cumrelf 5.9 Comparing Dependent Groups 5.9.1 A Shift Function for Dependent Groups 5.9.2 R Function lband 5.9.3 Comparing Specified Quantiles Method D1 Method D2 Method D3 5.9.4 R Functions shiftdhd, Dqcomhd, qdec2ci, Dqdif and difQpci 5.9.5 Comparing Trimmed Means 5.9.6 R Functions yuend, yuendv2 and D.akp.effect 5.9.7 A Bootstrap-t Method for Marginal Trimmed Means 5.9.8 R Function ydbt 5.9.9 Inferences About the Distribution of Difference Scores 5.9.10 R Functions loc2dif and l2drmci 5.9.11 Percentile Bootstrap: Comparing Medians, M-Estimators and Other Measures of Location and Scale 5.9.12 R Function bootdpci 5.9.13 Handling Missing Values Method M1 Method M2 Method M3 Comments on Choosing a Method 5.9.14 R Functions rm2miss and rmmismcp 5.9.15 Comparing Variances 5.9.16 R Function comdvar 5.9.17 The Sign Test and Inferences About the Binomial Distribution 5.9.18 R Functions binomci, acbinomci and binomLCO 5.10 Exercises 6 Some Multivariate Methods 6.1 Generalized Variance 6.2 Depth 6.2.1 Mahalanobis Depth 6.2.2 Halfspace Depth 6.2.3 Computing Halfspace Depth 6.2.4 R Functions depth2, depth, fdepth, fdepthv2, unidepth 6.2.5 Projection Depth 6.2.6 R Functions pdis, pdisMC, and pdepth 6.2.7 Other Measures of Depth 6.2.8 R Functions zdist, zoudepth and prodepth 6.3 Some Affine Equivariant Estimators 6.3.1 Minimum Volume Ellipsoid Estimator 6.3.2 The Minimum Covariance Determinant Estimator 6.3.3 S-Estimators and Constrained M-Estimators 6.3.4 R Function tbs 6.3.5 Donoho-Gasko Generalization of a Trimmed Mean 6.3.6 R Functions dmean and dcov 6.3.7 The Stahel-Donoho W-Estimator 6.3.8 R Function sdwe 6.3.9 Median Ball Algorithm 6.3.10 R Function rmba 6.3.11 OGK Estimator 6.3.12 R Function ogk 6.3.13 An M-Estimator 6.3.14 R Functions MARest and dmedian 6.4 Multivariate Outlier Detection Methods 6.4.1 A Relplot 6.4.2 R Function relplot 6.4.3 The MVE Method 6.4.4 The MCD Method 6.4.5 R Functions covmve and covmcd 6.4.6 R Function out 6.4.7 The MGV Method 6.4.8 R Function outmgv 6.4.9 A Projection Method 6.4.10 R Functions outpro and out3d 6.4.11 Outlier Identification in High Dimensions 6.4.12 R Functions outproad and outmgvad 6.4.13 Methods Designed for Functional Data 6.4.14 R Functions FBplot, Flplot, medcurve, func.out, spag.plot, funloc and funlocpb 6.4.15 Comments on Choosing a Method 6.5 A Skipped Estimator of Location and Scatter 6.5.1 R Functions smean, wmcd, wmve, mgvmean, L1medcen, spat, mgvcov, skip, skipcov 6.6 Robust Generalized Variance 6.6.1 R Function gvarg 6.7 Multivariate Location: Inference in the One-Sample Case 6.7.1 Inferences Based on the OP Measure of Location 6.7.2 Extension of Hotelling\'s T2 to Trimmed Means 6.7.3 R Functions smeancrv2 and hotel1.tr 6.7.4 Inferences Based on the MGV Estimator 6.7.5 R Function smgvcr 6.8 Comparing OP Measures of Location 6.8.1 R Functions smean2, matsplit and mat2grp Data Management 6.8.2 Comparing Robust Generalized Variances 6.8.3 R Function gvar2g 6.9 Multivariate Density Estimators 6.10 A Two-Sample, Projection-Type Extension of the Wilcoxon-Mann-Whitney Test 6.10.1 R Functions mulwmw and mulwmwv2 6.11 A Relative Depth Analog of the Wilcoxon-Mann-Whitney Test 6.11.1 R Function mwmw 6.12 Comparisons Based on Depth 6.12.1 R Functions lsqs3 and depthg2 6.13 Comparing Dependent Groups Based on All Pairwise Differences 6.13.1 R Function dfried 6.14 Robust Principal Components Analysis 6.14.1 R Functions prcomp and regpca 6.14.2 Maronna\'s Method 6.14.3 The SPCA Method 6.14.4 Method HRVB 6.14.5 Method OP 6.14.6 Method PPCA 6.14.7 R Functions outpca, robpca, robpcaS, SPCA, Ppca, Ppca.summary 6.14.8 Comments on Choosing the Number of Components 6.15 Cluster Analysis 6.15.1 R Functions Kmeans, kmeans.grp, TKmeans, TKmeans.grp 6.16 Multivariate Discriminate Analysis 6.16.1 R Function KNNdist 6.17 Exercises 7 One-Way and Higher Designs for Independent Groups 7.1 Trimmed Means and a One-Way Design 7.1.1 A Welch-Type Procedure and a Robust Measure of Effect Size A Robust, Heteroscedastic Measure of Effect Size 7.1.2 R Functions t1way, t1wayv2, esmcp, fac2list, t1wayF Data Management 7.1.3 A Generalization of Box\'s Method 7.1.4 R Function box1way 7.1.5 Comparing Medians and Other Quantiles 7.1.6 R Functions med1way and Qanova 7.1.7 A Bootstrap-t Method 7.1.8 R Functions t1waybt and btrim 7.2 Two-Way Designs and Trimmed Means 7.2.1 R Function t2way 7.2.2 Comparing Medians 7.2.3 R Functions med2way and Q2anova 7.3 Three-Way Designs and Trimmed Means Including Medians 7.3.1 R Functions t3way, fac2list and Q3anova 7.4 Multiple Comparisons Based on Medians and Other Trimmed Means 7.4.1 Basic Methods Based on Trimmed Means A Step-Down Multiple Comparison Procedure 7.4.2 R Functions lincon, conCON and stepmcp 7.4.3 Multiple Comparisons for Two-Way and Three-Way Designs 7.4.4 R Functions bbmcp, mcp2med, bbbmcp, mcp3med, con2way and con3way 7.4.5 A Bootstrap-t Procedure 7.4.6 R Functions linconb, bbtrim and bbbtrim 7.4.7 Controlling the Familywise Error Rate: Improvements on the Bonferroni Method Rom\'s Method Hochberg\'s Method Hommel\'s Method Benjamini-Hochberg Method The k-FWER Procedures 7.4.8 R Functions p.adjust and mcpKadjp 7.4.9 Percentile Bootstrap Methods for Comparing Medians, Other Trimmed Means and Quantiles 7.4.10 R Functions linconpb, bbmcppb, bbbmcppb, medpb, Qmcp, med2mcp, med3mcp and q2by2 7.4.11 Judging Sample Sizes 7.4.12 R Function hochberg 7.4.13 Explanatory Measure of Effect Size 7.4.14 R Functions ESmainMCP and esImcp 7.4.15 Comparing Curves (Functional Data) 7.4.16 R Functions funyuenpb and Flplot2g 7.5 A Random Effects Model for Trimmed Means 7.5.1 A Winsorized Intraclass Correlation 7.5.2 R Function rananova 7.6 Global Tests Based on M-Measures of Location Method SHB Method LSB 7.6.1 R Functions b1way and pbadepth 7.6.2 M-Estimators and Multiple Comparisons Variation of a Bootstrap-t Method A Percentile Bootstrap Method: Method SR 7.6.3 R Functions linconm and pbmcp 7.6.4 M-Estimators and the Random Effects Model 7.6.5 Other Methods for One-Way Designs 7.7 M-Measures of Location and a Two-Way Design 7.7.1 R Functions pbad2way and mcp2a 7.8 Ranked-Based Methods for a One-Way Design 7.8.1 The Rust-Fligner Method 7.8.2 R Function rfanova 7.8.3 A Heteroscedastic Rank-Based Method That Allows Tied Values 7.8.4 R Function bdm 7.8.5 Inferences About a Probabilistic Measure of Effect Size Method CHMCP Method WMWAOV Method DBH 7.8.6 R Functions cidmulv2, wmwaov and cidM 7.9 A Rank-Based Method for a Two-Way Design 7.9.1 R Function bdm2way 7.9.2 The Patel-Hoel Approach to Interactions 7.9.3 R Function rimul 7.10 MANOVA Based on Trimmed Means 7.10.1 R Functions MULtr.anova, MULAOVp, bw2list and YYmanova 7.10.2 Linear Contrasts 7.10.3 R Functions linconMpb, linconSpb, YYmcp, fac2Mlist and fac2BBMlist Data Management 7.11 Nested Designs 7.11.1 R Functions anova.nestA, mcp.nestA and anova.nestAP 7.12 Exercises 8 Comparing Multiple Dependent Groups 8.1 Comparing Trimmed Means 8.1.1 Omnibus Test Based on the Trimmed Means of the Marginal Distributions 8.1.2 R Function rmanova 8.1.3 Pairwise Comparisons and Linear Contrasts Based on Trimmed Means 8.1.4 Linear Contrasts Based on the Marginal Random Variables 8.1.5 R Functions rmmcp, rmmismcp and trimcimul 8.1.6 Judging the Sample Size 8.1.7 R Functions stein1.tr and stein2.tr 8.2 Bootstrap Methods Based on Marginal Distributions 8.2.1 Comparing Trimmed Means 8.2.2 R Function rmanovab 8.2.3 Multiple Comparisons Based on Trimmed Means 8.2.4 R Functions pairdepb and bptd 8.2.5 Percentile Bootstrap Methods Method RMPB3 Method RMPB4 Missing Values 8.2.6 R Functions bd1way, ddep and ddepGMC_C 8.2.7 Multiple Comparisons Using M-Estimators or Skipped Estimators 8.2.8 R Functions lindm and mcpOV 8.3 Bootstrap Methods Based on Difference Scores 8.3.1 R Function rmdzero 8.3.2 Multiple Comparisons 8.3.3 R Functions rmmcppb, wmcppb, dmedpb, lindepbt and qdmcpdif 8.4 Comments on Which Method to Use 8.5 Some Rank-Based Methods Method AP Method BPRM Decision Rule 8.5.1 R Functions apanova and bprm 8.6 Between-by-Within and Within-by-Within Designs 8.6.1 Analyzing a Between-by-Within Design Based on Trimmed Means 8.6.2 R Functions bwtrim and tsplit 8.6.3 Data Management: R Function bw2list 8.6.4 Bootstrap-t Method for a Between-by-Within Design 8.6.5 R Functions bwtrimbt and tsplitbt 8.6.6 Percentile Bootstrap Methods for a Between-by-Within Design 8.6.7 R Functions sppba, sppbb and sppbi 8.6.8 Multiple Comparisons Method BWMCP Method BWAMCP: Comparing Levels of Factor A for Each Level of Factor B Method BWBMCP: Dealing with Factor B Method BWIMCP: Interactions Methods SPMCPA, SPMCPB and SPMCPI 8.6.9 R Functions bwmcp, bwamcp, bwbmcp, bwimcp, bwimcpES, spmcpa, spmcpb and spmcpi 8.6.10 Within-by-Within Designs 8.6.11 R Functions wwtrim, wwtrimbt, wwmcp, wwmcppb and wwmcpbt 8.6.12 A Rank-Based Approach 8.6.13 R Function bwrank 8.6.14 Rank-Based Multiple Comparisons 8.6.15 R Function bwrmcp 8.6.16 Multiple Comparisons when Using a Patel-Hoel Approach to Interactions 8.6.17 R Function sisplit 8.7 Some Rank-Based Multivariate Methods 8.7.1 The Munzel-Brunner Method 8.7.2 R Function mulrank 8.7.3 The Choi-Marden Multivariate Rank Test 8.7.4 R Function cmanova 8.8 Three-Way Designs 8.8.1 Global Tests Based on Trimmed Means 8.8.2 R Functions bbwtrim, bwwtrim, wwwtrim, bbwtrimbt, bwwtrimbt and wwwtrimbt 8.8.3 Data Management: R Functions bw2list and bbw2list 8.8.4 Multiple Comparisons 8.8.5 R Function wwwmcp 8.8.6 R Functions bbwmcp, bwwmcp, bbwmcppb, bwwmcppb and wwwmcppb Bootstrap-t Methods Percentile Bootstrap Methods 8.9 Exercises 9 Correlation and Tests of Independence 9.1 Problems with Pearson\'s Correlation 9.1.1 Features of Data That Affect r and T 9.1.2 Heteroscedasticity and the Classic Test that rho=0 9.2 Two Types of Robust Correlations 9.3 Some Type M Measures of Correlation 9.3.1 The Percentage Bend Correlation 9.3.2 A Test of Independence Based on rhopb 9.3.3 R Function pbcor 9.3.4 A Test of Zero Correlation Among p Random Variables 9.3.5 R Function pball 9.3.6 The Winsorized Correlation 9.3.7 R Functions wincor and winall 9.3.8 The Biweight Midcovariance and Correlation 9.3.9 R Functions bicov and bicovm 9.3.10 Kendall\'s tau 9.3.11 Spearman\'s rho 9.3.12 R Functions tau, spear, cor and taureg 9.3.13 Heteroscedastic Tests of Zero Correlation 9.3.14 R Functions corb, pcorb and pcorhc4 9.4 Some Type O Correlations 9.4.1 MVE and MCD Correlations 9.4.2 Skipped Measures of Correlation 9.4.3 The OP Correlation 9.4.4 Inferences Based on Multiple Skipped Correlations 9.4.5 R Functions scor, mscor and scorci 9.5 A Test of Independence Sensitive to Curvature Method INDT Method MEDIND 9.5.1 R Functions indt, indtall and medind 9.6 Comparing Correlations: Independent Case 9.6.1 Comparing Pearson Correlations 9.6.2 Comparing Robust Correlations 9.6.3 R Functions twopcor, twohc4cor and twocor 9.7 Exercises 10 Robust Regression 10.1 Problems with Ordinary Least Squares 10.1.1 Computing Confidence Intervals Under Heteroscedasticity Method HC4WB-D Method HC4WB-C 10.1.2 An Omnibus Test 10.1.3 R Functions lsfitci, olshc4, hc4test and hc4wtest 10.1.4 Comments on Comparing Means via Dummy Coding 10.1.5 Salvaging the Homoscedasticity Assumption 10.2 Theil-Sen Estimator 10.2.1 R Functions tsreg, tshdreg, correg, regplot and regp2plot 10.3 Least Median of Squares 10.3.1 R Function lmsreg 10.4 Least Trimmed Squares Estimator 10.4.1 R Functions ltsreg and ltsgreg 10.5 Least Trimmed Absolute Value Estimator 10.5.1 R Function ltareg 10.6 M-Estimators 10.7 The Hat Matrix 10.8 Generalized M-Estimators 10.8.1 R Function bmreg 10.9 The Coakley-Hettmansperger and Yohai Estimators 10.9.1 MM-Estimator 10.9.2 R Functions chreg and MMreg 10.10 Skipped Estimators 10.10.1 R Functions mgvreg and opreg 10.11 Deepest Regression Line 10.11.1 R Functions rdepth and mdepreg 10.12 A Criticism of Methods with a High Breakdown Point 10.13 Some Additional Estimators 10.13.1 S-Estimators and tau-Estimators 10.13.2 R Functions snmreg and stsreg 10.13.3 E-Type Skipped Estimators 10.13.4 R Functions mbmreg, tstsreg, tssnmreg and gyreg 10.13.5 Methods Based on Robust Covariances 10.13.6 R Functions bireg, winreg and COVreg 10.13.7 L-Estimators 10.13.8 L1 and Quantile Regression 10.13.9 R Functions qreg, rqfit, qplotreg 10.13.10 Methods Based on Estimates of the Optimal Weights 10.13.11 Projection Estimators 10.13.12 Methods Based on Ranks 10.13.13 R Functions Rfit and Rfit.est 10.13.14 Empirical Likelihood Type and Distance-Constrained Maximum Likelihood Estimators 10.14 Comments About Various Estimators 10.14.1 Contamination Bias 10.15 Outlier Detection Based on a Robust Fit 10.15.1 Detecting Regression Outliers 10.15.2 R Functions reglev and rmblo 10.16 Logistic Regression and the General Linear Model 10.16.1 R Functions glm, logreg, wlogreg, logreg.plot 10.16.2 The General Linear Model 10.16.3 R Function glmrob 10.17 Multivariate Regression 10.17.1 The RADA Estimator 10.17.2 The Least Distance Estimator 10.17.3 R Functions MULMreg, mlrreg and Mreglde 10.17.4 Multivariate Least Trimmed Squares Estimator 10.17.5 R Function MULtsreg 10.17.6 Other Robust Estimators 10.18 Exercises 11 More Regression Methods 11.1 Inferences About Robust Regression Parameters 11.1.1 Omnibus Tests for Regression Parameters 11.1.2 R Function regtest 11.1.3 Inferences About Individual Parameters 11.1.4 R Functions regci, regciMC and wlogregci 11.1.5 Methods Based on the Quantile Regression Estimator 11.1.6 R Functions rqtest, qregci and qrchk 11.1.7 Inferences Based on the OP Estimator 11.1.8 R Functions opregpb and opregpbMC 11.1.9 Hypothesis Testing when Using a Multivariate Regression Estimator RADA 11.1.10 R Function mlrGtest 11.1.11 Robust ANOVA via Dummy Coding 11.1.12 Confidence Bands for the Typical Value of y Given x 11.1.13 R Functions regYhat, regYci, and regYband 11.1.14 R Function regse 11.2 Comparing the Regression Parameters of J >=2 Groups 11.2.1 Methods for Comparing Independent Groups Methods Based on the Least Squares Regression Estimator Multiple Comparisons Methods Based on Robust Estimators 11.2.2 R Functions reg2ci, reg1way, reg1wayISO, ancGpar, ols1way, ols1wayISO, olsJmcp, olsJ2, reg1mcp and olsWmcp 11.2.3 Methods for Comparing Two Dependent Groups Methods Based on a Robust Estimator Methods Based on the Least Squares Estimator 11.2.4 R Functions DregG, difreg, DregGOLS 11.3 Detecting Heteroscedasticity 11.3.1 A Quantile Regression Approach 11.3.2 Koenker-Bassett Method 11.3.3 R Functions qhomt and khomreg 11.4 Curvature and Half-Slope Ratios 11.4.1 R Function hratio 11.5 Curvature and Nonparametric Regression 11.5.1 Smoothers 11.5.2 Kernel Estimators and Cleveland\'s LOWESS Kernel Smoothing Cleveland\'s LOWESS 11.5.3 R Functions lplot, lplot.pred and kerreg 11.5.4 The Running-Interval Smoother 11.5.5 R Functions rplot and runYhat 11.5.6 Smoothers for Estimating Quantiles 11.5.7 R Function qhdsm 11.5.8 Special Methods for Binary Outcomes 11.5.9 R Functions logSM, logSMpred, bkreg and rplot.bin 11.5.10 Smoothing with More than One Predictor 11.5.11 R Functions rplot, runYhat, rplotsm and runpd 11.5.12 LOESS 11.5.13 Other Approaches 11.5.14 R Functions adrun, adrunl, gamplot, gamplotINT 11.6 Checking the Specification of a Regression Model 11.6.1 Testing the Hypothesis of a Linear Association 11.6.2 R Function lintest 11.6.3 Testing the Hypothesis of a Generalized Additive Model 11.6.4 R Function adtest 11.6.5 Inferences About the Components of a Generalized Additive Model 11.6.6 R Function adcom 11.6.7 Detecting Heteroscedasticity Based on Residuals 11.6.8 R Function rhom 11.7 Regression Interactions and Moderator Analysis 11.7.1 R Functions kercon, riplot, runsm2g, ols.plot.inter, olshc4.inter, reg.plot.inter and regci.inter 11.7.2 Mediation Analysis 11.7.3 R Functions ZYmediate, regmed2 and regmediate 11.8 Comparing Parametric, Additive and Nonparametric Fits 11.8.1 R Functions adpchk and pmodchk 11.9 Measuring the Strength of an Association Given a Fit to the Data 11.9.1 R Functions RobRsq, qcorp1 and qcor 11.9.2 Comparing Two Independent Groups via the LOWESS Version of Explanatory Power 11.9.3 R Functions smcorcom and smstrcom 11.10 Comparing Predictors 11.10.1 Comparing Correlations 11.10.2 R Functions TWOpov, TWOpNOV, corCOMmcp, twoDcorR, and twoDNOV 11.10.3 Methods Based on Prediction Error The 0.632 Estimator The Leave-One-Out Cross-Validation Method 11.10.4 R Functions regpre and regpreCV 11.10.5 R Function larsR 11.10.6 Inferences About Which Predictors Are Best Method IBS Method BTS Method SM 11.10.7 R Functions regIVcom, ts2str and sm2strv7 11.11 Marginal Longitudinal Data Analysis: Comments on Comparing Groups 11.11.1 R Functions long2g, longreg, longreg.plot and xyplot 11.12 Exercises 12 ANCOVA 12.1 Methods Based on Specific Design Points and a Linear Model 12.1.1 Method S1 12.1.2 Method S2 12.1.3 Dealing with Two Covariates 12.1.4 R Functions ancJN, ancJNmp, ancJNmpcp, anclin, reg2plot and reg2g.p2plot 12.2 Methods when There Is Curvature and a Single Covariate 12.2.1 Method Y 12.2.2 Method BB: Bootstrap Bagging 12.2.3 Method UB 12.2.4 Method TAP 12.2.5 Method G 12.2.6 R Functions ancova, ancovaWMW, ancpb, rplot2g, runmean2g, lplot2g, ancdifplot, ancboot, ancbbpb, qhdsm2g, ancovaUB, ancovaUB.pv, ancdet, ancmg1 and ancGLOB 12.3 Dealing with Two Covariates when There Is Curvature 12.3.1 Method MC1 12.3.2 Method MC2 12.3.3 Method MC3 12.3.4 R Functions ancovamp, ancovampG, ancmppb, ancmg, ancov2COV, ancdes and ancdet2C 12.4 Some Global Tests 12.4.1 Method TG 12.4.2 R Functions ancsm and Qancsm 12.5 Methods for Dependent Groups 12.5.1 Methods Based on a Linear Model 12.5.2 R Functions Dancts and Dancols 12.5.3 Dealing with Curvature: Methods DY, DUB and DTAP 12.5.4 R Functions Dancova, Dancovapb, DancovaUB and Dancdet 12.6 Exercises Index References