دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Third
نویسندگان: Saeed Benjamin Niku
سری:
ISBN (شابک) : 9781119527596, 1119527597
ناشر:
سال نشر: 2020
تعداد صفحات: 530
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 27 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Introduction to robotics analysis, control, applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحلیل، کنترل، کاربردهای روباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
متن اصلاح شده برای تجزیه و تحلیل، کنترل، و کاربردهای رباتیک ویرایش سوم تجدید نظر شده و به روز شده مقدمه رباتیک: تجزیه و تحلیل، کنترل، برنامه ها، راهنمای مبانی رباتیک، اجزای ربات و زیرسیستم ها و برنامه های کاربردی را ارائه می دهد. نویسنده - یک متخصص برجسته در این موضوع - مکانیک و سینماتیک ربات های سریالی و موازی را با رویکرد Denavit-Hartenberg و همچنین مکانیک مبتنی بر پیچ پوشش می دهد. علاوه بر این، متن حاوی اطلاعاتی در مورد کاربردهای ریزپردازنده، سیستم های کنترل، سیستم های بینایی، حسگرها و محرک ها است. مقدمه ای بر رباتیک به دانشجویان مهندسی و مهندسان تمرین کننده اطلاعات مورد نیاز برای طراحی ربات، ادغام یک ربات در برنامه های کاربردی مناسب یا تجزیه و تحلیل یک ربات را می دهد. نسخه سوم به روز شده حاوی موضوعات جدید بسیاری است و محتوا در سراسر متن ساده شده است. نسخه جدید شامل دو فصل کاملاً جدید در مورد مکانیک مبتنی بر پیچ و ربات های موازی است. این کتاب مملو از مثالهای گویا و جدید است و شامل مسائل مربوط به تکالیف است که برای تقویت یادگیری طراحی شدهاند. این متن مهم: راهنمای اصلاح شده و به روز شده ای را برای اصول رباتیک ارائه می دهد حاوی اطلاعاتی در مورد اجزای ربات، ویژگی های ربات، زبان های ربات و برنامه های کاربردی رباتیک است. مهندسی کنترل، از جمله ابزارهای تجزیه و تحلیل و طراحی، سینماتیک ربات های موازی را مورد بحث قرار می دهد که برای دانشجویان مهندسی و همچنین مهندسان شاغل نوشته شده است، مقدمه ای بر رباتیک، ویرایش سوم اصول رباتیک، اجزای ربات و زیرسیستم ها، برنامه های کاربردی را بررسی می کند، و برای شامل موارد زیر بازبینی شده است. آخرین تحولات در این زمینه
The revised text to the analysis, control, and applications of robotics The revised and updated third edition of Introduction to Robotics: Analysis, Control, Applications, offers a guide to the fundamentals of robotics, robot components and subsystems and applications. The author—a noted expert on the topic—covers the mechanics and kinematics of serial and parallel robots, both with the Denavit-Hartenberg approach as well as screw-based mechanics. In addition, the text contains information on microprocessor applications, control systems, vision systems, sensors, and actuators. Introduction to Robotics gives engineering students and practicing engineers the information needed to design a robot, to integrate a robot in appropriate applications, or to analyze a robot. The updated third edition contains many new subjects and the content has been streamlined throughout the text. The new edition includes two completely new chapters on screw-based mechanics and parallel robots. The book is filled with many new illustrative examples and includes homework problems designed to enhance learning. This important text: Offers a revised and updated guide to the fundamental of robotics Contains information on robot components, robot characteristics, robot languages, and robotic applications Covers the kinematics of serial robots with Denavit-Hartenberg methodology and screw-based mechanics Includes the fundamentals of control engineering, including analysis and design tools Discusses kinematics of parallel robots Written for students of engineering as well as practicing engineers, Introduction to Robotics, Third Edition reviews the basics of robotics, robot components and subsystems, applications, and has been revised to include the most recent developments in the field.
Cover Title Page Copyright Page Contents Preface About the Companion Website Chapter 1 Fundamentals 1.1 Introduction 1.2 What Is a Robot? 1.3 Classification of Robots 1.4 What Is Robotics? 1.5 History of Robotics 1.6 Advantages and Disadvantages of Robots 1.7 Robot Components 1.8 Robot Degrees of Freedom 1.9 Robot Joints 1.10 Robot Coordinates 1.11 Robot Reference Frames 1.12 Programming Modes 1.13 Robot Characteristics 1.14 Robot Workspace 1.15 Robot Languages 1.16 Robot Applications 1.17 Other Robots and Applications 1.18 Collaborative Robots 1.19 Social Issues 1.20 Summary References Problems Chapter 2 Kinematics of Serial Robots: Position Analysis 2.1 Introduction 2.2 Robots as Mechanisms 2.3 Conventions 2.4 Matrix Representation 2.4.1 Representation of a Point in Space 2.4.2 Representation of a Vector in Space 2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 2.4.5 Representation of a Rigid Body 2.5 Homogeneous Transformation Matrices 2.6 Representation of Transformations 2.6.1 Representation of a Pure Translation 2.6.2 Representation of a Pure Rotation about an Axis 2.6.3 Representation of Combined Transformations 2.6.4 Transformations Relative to the Current (Moving) Frame 2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 2.7 Inverse of Transformation Matrices 2.8 Forward and Inverse Kinematics of Robots 2.9 Forward and Inverse Kinematic Equations: Position 2.9.1 Cartesian (Gantry, Rectangular) Coordinates 2.9.2 Cylindrical Coordinates 2.9.3 Spherical Coordinates 2.9.4 Articulated Coordinates 2.10 Forward and Inverse Kinematic Equations: Orientation 2.10.1 Roll, Pitch, Yaw (RPY) Angles 2.10.2 Euler Angles 2.10.3 Articulated Joints 2.11 Forward and Inverse Kinematic Equations: Position and Orientation 2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots 2.13 The Inverse Kinematic Solution of Robots 2.13.1 General Solution for Articulated Robot Arms 2.14 Inverse Kinematic Programming of Robots 2.15 Dual-Arm Cooperating Robots 2.16 Degeneracy and Dexterity 2.16.1 Degeneracy 2.16.2 Dexterity 2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 2.18 Design Projects 2.18.1 Stair-Climbing Robot 2.18.2 A 3-DOF Robot 2.18.3 A 3-DOF Mobile Robot 2.19 Summary References Problems Chapter 3 Robot Kinematics with Screw-Based Mechanics 3.1 Introduction 3.2 What Is a Screw? 3.3 Rotation about a Screw Axis 3.4 Homogenous Transformations about a General Screw Axis 3.5 Successive Screw-Based Transformations 3.6 Forward and Inverse Position Analysis of an Articulated Robot 3.7 Design Projects 3.8 Summary Additional Reading Problems Chapter 4 Kinematics Analysis of Parallel Robots 4.1 Introduction 4.2 Physical Characteristics of Parallel Robots 4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 4.4 Forward and Inverse Kinematics of Planar Parallel Robots 4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 4.6 Other Parallel Robot Configurations 4.7 Design Projects 4.8 Summary References Problems Chapter 5 Differential Motions and Velocities 5.1 Introduction 5.2 Differential Relationships 5.3 The Jacobian 5.4 Differential versus Large-Scale Motions 5.5 Differential Motions of a Frame versus a Robot 5.6 Differential Motions of a Frame 5.6.1 Differential Translations 5.6.2 Differential Rotations about Reference Axes 5.6.3 Differential Rotation about a General Axis q 5.6.4 Differential Transformations of a Frame 5.7 Interpretation of the Differential Change 5.8 Differential Changes between Frames 5.9 Differential Motions of a Robot and Its Hand Frame 5.10 Calculation of the Jacobian 5.11 How to Relate the Jacobian and the Differential Operator 5.12 The Inverse Jacobian 5.13 Calculation of the Jacobian with Screw-Based Mechanics 5.14 The Inverse Jacobian for the Screw-Based Method 5.15 Calculation of the Jacobians of Parallel Robots 5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 5.16 Design Projects 5.16.1 The 3-DOF Robot 5.16.2 The 3-DOF Mobile Robot 5.17 Summary References Problems Chapter 6 Dynamic and Force Analysis 6.1 Introduction 6.2 Lagrangian Mechanics: A Short Overview 6.3 Effective Moments of Inertia 6.4 Dynamic Equations for Multiple-DOF Robots 6.4.1 Kinetic Energy 6.4.2 Potential Energy 6.4.3 The Lagrangian 6.4.4 Robot's Equations of Motion 6.5 Static Force Analysis of Robots 6.6 Transformation of Forces and Moments between Coordinate Frames 6.7 Design Project 6.8 Summary References Problems Chapter 7 Trajectory Planning 7.1 Introduction 7.2 Path vs. Trajectory 7.3 Joint-Space vs. Cartesian-Space Descriptions 7.4 Basics of Trajectory Planning 7.5 Joint-Space Trajectory Planning 7.5.1 Third-Order Polynomial Trajectory Planning 7.5.2 Fifth-Order Polynomial Trajectory Planning 7.5.3 Linear Segments with Parabolic Blends 7.5.4 Linear Segments with Parabolic Blends and Via Points 7.5.5 Higher-Order Trajectories 7.5.6 Other Trajectories 7.6 Cartesian-Space Trajectories 7.7 Continuous Trajectory Recording 7.8 Design Project 7.9 Summary References Problems Chapter 8 Motion Control Systems 8.1 Introduction 8.2 Basic Components and Terminology 8.3 Block Diagrams 8.4 System Dynamics 8.5 Laplace Transform 8.6 Inverse Laplace Transform 8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles 8.7 Transfer Functions 8.8 Block Diagram Algebra 8.9 Characteristics of First-Order Transfer Functions 8.10 Characteristics of Second-Order Transfer Functions 8.11 Characteristic Equation: Pole/Zero Mapping 8.12 Steady-State Error 8.13 Root Locus Method 8.14 Proportional Controllers 8.15 Proportional-Plus-Integral Controllers 8.16 Proportional-Plus-Derivative Controllers 8.17 Proportional-Integral-Derivative Controller (PID) 8.18 Lead and Lag Compensators 8.19 Bode Diagram and Frequency-Domain Analysis 8.20 Open-Loop vs. Closed-Loop Applications 8.21 Multiple-Input and Multiple-Output Systems 8.22 State-Space Control Methodology 8.23 Digital Control 8.24 Nonlinear Control Systems 8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 8.26 Design Projects 8.27 Summary References Problems Chapter 9 Actuators and Drive Systems 9.1 Introduction 9.2 Characteristics of Actuating Systems 9.2.1 Nominal Characteristics – Weight, Power-to-Weight Ratio, Operating Pressure, Voltage, and Others 9.2.2 Stiffness vs. Compliance 9.2.3 Use of Reduction Gears 9.3 Comparison of Actuating Systems 9.4 Hydraulic Actuators 9.5 Pneumatic Devices 9.6 Electric Motors 9.6.1 Fundamental Differences Between AC- and DC-Type Motors 9.6.2 DC Motors 9.6.3 AC Motors 9.6.4 Brushless DC Motors 9.6.5 Direct-Drive Electric Motors 9.6.6 Servomotors 9.6.7 Stepper Motors 9.7 Microprocessor Control of Electric Motors 9.7.1 Pulse Width Modulation 9.7.2 Direction Control of DC Motors with an H-Bridge 9.8 Magnetostrictive Actuators 9.9 Shape-Memory Type Metals 9.10 Electroactive Polymer Actuators (EAPs) 9.11 Speed Reduction 9.12 Other Systems 9.13 Design Projects 9.14 Summary References Problems Chapter 10 Sensors 10.1 Introduction 10.2 Sensor Characteristics 10.3 Sensor Utilization 10.4 Position Sensors 10.4.1 Potentiometers 10.4.2 Encoders 10.4.3 Linear Variable Differential Transformer (LVDT) 10.4.4 Resolvers 10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 10.4.6 Hall-effect Sensors 10.4.7 Global Positioning System (GPS) 10.4.8 Other Devices 10.5 Velocity Sensors 10.5.1 Encoders 10.5.2 Tachometers 10.5.3 Differentiation of Position Signal 10.6 Acceleration Sensors 10.7 Force and Pressure Sensors 10.7.1 Piezoelectric 10.7.2 Force-Sensing Resistor 10.7.3 Strain Gauge 10.7.4 Antistatic Foam 10.8 Torque Sensors 10.9 Microswitches 10.10 Visible Light and Infrared Sensors 10.11 Touch and Tactile Sensors 10.12 Proximity Sensors 10.12.1 Magnetic Proximity Sensors 10.12.2 Optical Proximity Sensors 10.12.3 Ultrasonic Proximity Sensors 10.12.4 Inductive Proximity Sensors 10.12.5 Capacitive Proximity Sensors 10.12.6 Eddy Current Proximity Sensors 10.13 Range Finders 10.13.1 Ultrasonic Range Finders 10.13.2 Light-Based Range Finders 10.14 Sniff Sensors 10.15 Vision Systems 10.16 Voice-Recognition Devices 10.17 Voice Synthesizers 10.18 Remote Center Compliance (RCC) Device 10.19 Design Project 10.20 Summary References Chapter 11 Image Processing and Analysis with Vision Systems 11.1 Introduction 11.2 Basic Concepts 11.2.1 Image Processing vs. Image Analysis 11.2.2 Two- and Three-Dimensional Image Types 11.2.3 The Nature of an Image 11.2.4 Acquisition of Images 11.2.5 Digital Images 11.2.6 Frequency Domain vs. Spatial Domain 11.3 Fourier Transform and Frequency Content of a Signal 11.4 Frequency Content of an Image: Noise and Edges 11.5 Resolution and Quantization 11.6 Sampling Theorem 11.7 Image-Processing Techniques 11.8 Histograms of Images 11.9 Thresholding 11.10 Spatial Domain Operations: Convolution Mask 11.11 Connectivity 11.12 Noise Reduction 11.12.1 Neighborhood Averaging with Convolution Masks 11.12.2 Image Averaging 11.12.3 Frequency Domain 11.12.4 Median Filters 11.13 Edge Detection 11.14 Sharpening an Image 11.15 Hough Transform 11.16 Segmentation 11.17 Segmentation by Region Growing and Region Splitting 11.18 Binary Morphology Operations 11.18.1 Thickening Operation 11.18.2 Dilation 11.18.3 Erosion 11.18.4 Skeletonization 11.18.5 Open Operation 11.18.6 Close Operation 11.18.7 Fill Operation 11.19 Gray Morphology Operations 11.19.1 Erosion 11.19.2 Dilation 11.20 Image Analysis 11.21 Object Recognition by Features 11.21.1 Basic Features Used for Object Identification 11.21.2 Moments 11.21.3 Template Matching 11.21.4 Discrete Fourier Descriptors 11.21.5 Computed Tomography (CT) 11.22 Depth Measurement with Vision Systems 11.22.1 Scene Analysis vs. Mapping 11.22.2 Range Detection and Depth Analysis 11.22.3 Stereo Imaging 11.22.4 Scene Analysis with Shading and Sizes 11.23 Specialized Lighting 11.24 Image Data Compression 11.24.1 Intraframe Spatial Domain Techniques 11.24.2 Interframe Coding 11.24.3 Compression Techniques 11.25 Color Images 11.26 Heuristics 11.27 Applications of Vision Systems 11.28 Design Project 11.29 Summary References Problems Chapter 12 Fuzzy Logic Control 12.1 Introduction 12.2 Fuzzy Control: What Is Needed 12.3 Crisp Values vs. Fuzzy Values 12.4 Fuzzy Sets: Degrees of Truth and Membership 12.5 Fuzzification 12.6 Fuzzy Inference Rules 12.7 Defuzzification 12.7.1 Center of Gravity Method 12.7.2 Mamdani Inference Method 12.8 Simulation of a Fuzzy Logic Controller 12.9 Applications of Fuzzy Logic in Robotics 12.10 Design Project 12.11 Summary References Problems Appendix A A.1 Matrix Algebra and Notation: A Review A.2 Calculation of an Angle from its Sine, Cosine, or Tangent A.3 Solving Equations with Sine and Cosine Problems Appendix B Image-Acquisition Systems Index EULA