دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: نویسندگان: King-Yeung Lam. Yuan Lou سری: Lecture Notes on Mathematical Modelling in the Life Sciences ISBN (شابک) : 3031204212, 9783031204210 ناشر: Springer سال نشر: 2022 تعداد صفحات: 316 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Introduction to Reaction-Diffusion Equations: Theory and Applications to Spatial Ecology and Evolutionary Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر معادلات واکنش- انتشار: نظریه و کاربردها در بوم شناسی فضایی و زیست شناسی تکاملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Part I Linear Theory Chapter 1 The Maximum Principle and the Principal Eigenvalues for Single Equations 1.1 The Maximum Principle for Single Parabolic Equations 1.2 The Comparison Principle for Semilinear Equations 1.3 The Principal Eigenvalue for Linear Elliptic Operators 1.4 Further Reading Problems References Chapter 2 The Principal Eigenvalue for Periodic-Parabolic Problems 2.1 Existence of the Principal Eigenvalue for Periodic-Parabolic Problems 2.2 Qualitative Properties of Periodic Principal Eigenvalues 2.2.1 The Hutson–Shen–Vickers Lemma 2.2.2 Small diffusion limit 2.2.3 Large diffusion limit 2.2.4 Monotonicity in frequency 2.3 Applications to Two-Species Competition Models in a Spatially and Temporally Varying Environment 2.4 Further Reading Problems References Chapter 3 The Maximum Principle and the Principal Eigenvalue for Systems 3.1 Comparison Principle of Cooperative Parabolic Systems 3.2 The Principal Eigenvalue of Cooperative Systems 3.2.1 Existence results 3.2.2 Asymptotic behavior of the principal eigenvalue 3.3 Comparison Principle and Principal Eigenvalue for Competitive Parabolic Systems 3.4 Further Reading Problems References Chapter 4 The Principal Floquet Bundle for Parabolic Equations 4.1 Existence Results for Non-Divergence Form Parabolic Equations 4.2 Existence Results for Divergence Form Parabolic Equations 4.3 The Generalized Relative Entropy 4.4 Further Reading Problems References Part II Ecological Dynamics Chapter 5 The Logistic EquationWith Diffusion 5.1 A Reaction-Diffusion Model for a Single Species 5.2 The Logistic Equation 5.3 Critical Domain Size 5.4 Further Reading Problems References Chapter 6 Spreading in Homogeneous and Shifting Environments 6.1 The Fisher–KPP Equation and the Definition of Spreading Speed 6.2 A Maximum Principle for Unbounded Domains 6.3 Homogeneous Environments Traveling wave solutions Periodically Varying Environments 6.4 Shifting Environments Shifting environments with a moving source patch Shifting boundary connecting an unbounded sink and an unbounded source patch Shifting boundary connecting two unbounded source patches and nonlocally pulling 6.5 Further Reading Problems References Chapter 7 The Lotka–Volterra Competition-Diffusion Systems for Two Species 7.1 Elements from the Theory of Monotone Dynamical Systems 7.2 Lotka–Volterra Systems with Constant Coefficients 7.3 Lotka–Volterra Systems with Heterogeneous Coefficients 7.3.1 Slow vs fast diffusing populations 7.3.2 Weak competition in a heterogeneous environment 7.4 Competition in an Advective Environment 7.5 Further Reading Problems References Chapter 8 Dynamics of Phytoplankton Populations 8.1 Introduction 8.2 Single Species in a EutrophicWater Column 8.2.1 Monotonicity of the single species model 8.2.2 Long-time dynamics of the single species model 8.3 Dynamics for Two Competing Phytoplankton Species Selection for more buoyant phytoplankton species 8.4 The N--Species Model – Application of the Principal Floquet Bundle 8.4.1 A priori estimates 8.4.2 A rough estimate 8.4.3 The normalized principal bundle 8.4.4 A general exclusion criterion 8.5 Further Reading Problems References Part III Evolutionary Dynamics Chapter 9 Elements of Adaptive Dynamics 9.1 Introduction 9.2 Evolution of Dispersal in Advective Environments The invasion exponent The selection gradient Singular strategy Convergence stable strategy Evolutionarily stable strategy Continuously stable strategy Neighborhood invader strategy Dimorphism (coexistence of phenotypes) Evolutionary branching point 9.3 Further Reading Problems References Chapter 10 Selection-Mutation Models 10.1 Populations Structured by a Phenotypic Trait The Case Ω = RN 10.2 Populations Structured by Space and a Phenotypic Trait 10.3 Further Reading Problems References Appendices Appendix A The Fixed Point Index A.1 Properties of the Leray–Schauder Degree A.2 The Fixed Point Index References Appendix B The Krein–Rutman Theorem B.1 Introduction B.2 Cones and Orderings B.3 The Classical Krein–Rutman theorem B.4 The Generalized Krein–Rutman theorem for Homogeneous Maps B.5 Further Reading Problems References Appendix C Subhomogeneous Dynamics C.1 Subhomogeneous Maps C.2 Subhomogeneous Semiflows C.3 Further Reading Problems References Appendix D Existence of Connecting Orbits D.1 Discrete-Time Monotone Dynamical Systems D.2 Continuous-Time Monotone Dynamical Systems References Appendix E Abstract Competition Systems in Ordered Banach Spaces E.1 Discrete-Time Competition Systems E.2 Continuous-Time Competition Systems E.3 Further Reading Problems References Index