دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Wolfgang Hollik,
سری:
ISBN (شابک) : 9789811242199, 9789811220869
ناشر: World Scientific Publishing Company
سال نشر: 2022
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Introduction To Quantum Field Theory And The Standard Model به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر نظریه میدان کوانتومی و مدل استاندارد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Foreword Preface Frequently cited references Index of useful formulae A note on the problems 1 Adding special relativity to quantum mechanics 1.1Introductory remarks 1.2Theory of a single free, spinless particle of mass µ 1.3Determination of the position operator X 2 The simplest many-particle theory 2.1First steps in describing a many-particle state 2.2Occupation number representation 2.3Operator formalism and the harmonic oscillator 2.4The operator formalism applied to Fock space 3 Constructing a scalar quantum field 3.1Ensuring relativistic causality 3.2Conditions to be satisfied by a scalar quantum field 3.3The explicit form of the scalar quantum field 3.4Turning the argument around: the free scalar field as the fundamental object 3.5A hint of things to come Problems 1 Solutions 1 4 The method of the missing box 4.1Classical particle mechanics 4.2Quantum particle mechanics 4.3Classical field theory 4.4Quantum field theory 4.5Normal ordering 5 Symmetries and conservation laws I. Spacetime symmetries 5.1Symmetries and conservation laws in classical particle mechanics 5.2Extension to quantum particle mechanics 5.3Extension to field theory 5.4Conserved currents are not uniquely defined 5.5Calculation of currents from spacetime translations 5.6Lorentz transformations, angular momentum and something else Problems 2 Solutions 2 6 Symmetries and conservation laws II. Internal symmetries 6.1Continuous symmetries 6.2Lorentz transformation properties of the charges 6.3Discrete symmetries 7 Introduction to perturbation theory and scattering 7.1The Schrödinger and Heisenberg pictures 7.2The interaction picture 7.3Dyson’s formula 7.4Scattering and the S-matrix Problems 3 Solutions 3 8 Perturbation theory I. Wick diagrams 8.1Three model field theories 8.2Wick’s theorem 8.3Dyson’s formula expressed in Wick diagrams 8.4Connected and disconnected Wick diagrams 8.5The exact solution of Model 1 Problems 4 Solutions 4 9 Perturbation theory II. Divergences and counterterms 9.1The need for a counterterm in Model 2 9.2Evaluating the S matrix in Model 2 9.3Computing the Model 2 ground state energy 9.4The ground state wave function in Model 2 9.5An infrared divergence Problem 5 Solution 5 10 Mass renormalization and Feynman diagrams 10.1Mass renormalization in Model 3 10.2Feynman rules in Model 3 10.3Feynman diagrams in Model 3 to order g2 10.4O(g2) nucleon–nucleon scattering in Model 3 11 Scattering I. Mandelstam variables, CPT and phase space 11.1Nucleon–antinucleon scattering 11.2Nucleon–meson scattering and meson pair creation 11.3Crossing symmetry and CPT invariance 11.4Phase space and the S matrix 12 Scattering II. Applications 12.1Decay processes 12.2Differential cross-section for a two-particle initial state 12.3The density of final states for two particles 12.4The Optical Theorem 12.5The density of final states for three particles 12.6A question and a preview Problems 6 Solutions 6 13 Green’s functions and Heisenberg fields 13.1The graphical definition of (n)(ki) 13.2The generating functional Z[ρ] for G(n)(xi) 13.3Scattering without an adiabatic function 13.4Green’s functions in the Heisenberg picture 13.5Constructing in and out states Problems 7 Solutions 7 14 The LSZ formalism 14.1Two-particle states 14.2The proof of the LSZ formula 14.3Model 3 revisited 14.4Guessing the Feynman rules for a derivative interaction Problems 8 Solutions 8 15 Renormalization I. Determination of counterterms 15.1The perturbative determination of A 15.2The Källén-Lehmann spectral representation 15.3The renormalized meson propagator ′ 15.4The meson self-energy to O(g2) 15.5A table of integrals for one loop 16 Renormalization II. Generalization and extension 16.1The meson self-energy to O(g2), completed 16.2Feynman parametrization for multiloop graphs 16.3Coupling constant renormalization 16.4Are all quantum field theories renormalizable? Problems 9 Solutions 9 17 Unstable particles 17.1Calculating the propagator for µ > 2m 17.2The Breit–Wigner formula 17.3A first look at the exponential decay law 17.4Obtaining the decay law by stationary phase approximation 18 Representations of the Lorentz Group 18.1Defining the problem: Lorentz transformations in general 18.2Irreducible representations of the rotation group 18.3Irreducible representations of the Lorentz group 18.4Properties of the SO(3) representations D(s) 18.5Properties of the SO(3, 1) representations D(s+, s–) Problems 10 Solutions 10 19 The Dirac Equation I. Constructing a Lagrangian 19.1Building vectors out of spinors 19.2A Lagrangian for Weyl spinors 19.3The Weyl equation 19.4The Dirac equation 20 The Dirac Equation II. Solutions 20.1The Dirac basis 20.2Plane wave solutions 20.3Pauli’s theorem 20.4The γ matrices 20.5Bilinear spinor products 20.6Orthogonality and completeness Problems 11 Solutions 11 21 The Dirac Equation III. Quantization and Feynman Rules 21.1Canonical quantization of the Dirac field 21.2Wick’s theorem for Fermi fields 21.3Calculating the Dirac propagator 21.4An example: Nucleon–meson scattering 21.5The Feynman rules for theories involving fermions 21.6Summing and averaging over spin states Problems 12 Solutions 12 22 CPT and Fermi fields 22.1Parity and Fermi fields 22.2The Majorana representation 22.3Charge conjugation and Fermi fields 22.4PT invariance and Fermi fields 22.5The CPT theorem and Fermi fields 23 Renormalization of spin- theories 23.1Lessons from Model 3 A digression on theories that do not conserve parity 23.2The renormalized Dirac propagator ′ 23.3The spectral representation of ′ 23.4The nucleon self-energy ′ 23.5The renormalized coupling constant Problems 13 Solutions 13 24 Isospin 24.1Field theoretic constraints on coupling constants 24.2The nucleon and pion as isospin multiplets 24.3Experimental consequences of isospin conservation 24.4Hypercharge and G-parity 25 Coping with infinities: regularization and renormalization 25.1Regularization 25.2The BPHZ algorithm 25.3Applying the algorithm 25.4Survey of renormalizable theories for spin 0 and spin ½ Problems 14 Solutions 14 26 Vector fields 26.1The free real vector field 26.2The Proca equation and its solutions 26.3Canonical quantization of the Proca field 26.4The limit μ → 0: a simple physical consequence 26.5Feynman rules for a real massive vector field 27 Electromagnetic interactions and minimal coupling 27.1Gauge invariance and conserved currents 27.2The minimal coupling prescription 27.3Technical problems Problems 15 Solutions 15 28 Functional integration and Feynman rules 28.1First steps with functional integrals 28.2Functional integrals in field theory 28.3The Euclidean Z0[J] for a free theory 28.4The Euclidean Z[J] for an interacting field theory 28.5Feynman rules from functional integrals 28.6The functional integral for massive vector mesons 29 Extending the methods of functional integrals 29.1Functional integration for Fermi fields 29.2Derivative interactions via functional integrals 29.3Ghost fields 29.4The Hamiltonian form of the generating functional 29.5How to eliminate constrained variables 29.6Functional integrals for QED with massive photons Problems 16 Solutions 16 30 Electrodynamics with a massive photon 30.1Obtaining the Feynman rules for scalar electrodynamics 30.2The Feynman rules for massive photon electrodynamics Scalar electrodynamics with a massive photon Spinor electrodynamics with a massive photon 30.3Some low order computations in spinor electrodynamics 30.4Quantizing massless electrodynamics with functional integrals 31 The Faddeev–Popov prescription 31.1The prescription in a finite number of dimensions 31.2Extending the prescription to a gauge field theory 31.3Applying the prescription to QED 31.4Equivalence of the Faddeev–Popov prescription and canonical quantization 31.5Revisiting the massive vector theory 31.6A first look at renormalization in QED Problems 17 Solutions 17 32 Generating functionals and Green’s functions 32.1The loop expansion 32.2The generating functional for 1PI Green’s functions 32.3Connecting statistical mechanics with quantum field theory 32.4Quantum electrodynamics in a covariant gauge 33 The renormalization of QED 33.1Counterterms and gauge invariance 33.2Counterterms in QED with a massive photon 33.3Gauge-invariant cutoffs 33.4The Ward identity and Green’s functions 33.5The Ward identity and counterterms Problems 18 Solutions 18 34 Two famous results in QED 34.1Coulomb’s Law 34.2The electron’s anomalous magnetic moment in quantum mechanics 34.3The electron’s anomalous magnetic moment in QED 35 Confronting experiment with QED 35.1Higher order contributions to the electron’s magnetic moment 35.2The anomalous magnetic moment of the muon 35.3A low-energy theorem 35.4Photon-induced corrections to strong interaction processes (via symmetries) Problems 19 Solutions 19 36 Introducing SU(3) 36.1Decays of the η 36.2An informal historical introduction to SU(3) 36.3Tensor methods for SU(n) 36.4Applying tensor methods in SU(2) 36.5Tensor representations of SU(3) 37 Irreducible multiplets in SU(3) 37.1The irreducible representations q and 37.2Matrix tricks with SU(3) 37.3Isospin and hypercharge decomposition 37.4Direct products in SU(3) 37.5Symmetry and antisymmetry in the Clebsch–Gordan coefficients Problems 20 Solutions 20 38 SU(3): Proofs and applications 38.1Irreducibility, inequivalence, and completeness of the IR’s 38.2The operators I, Y and Q in SU(3) 38.3Electromagnetic form factors of the baryon octet 38.4Electromagnetic mass splittings of the baryon octet 39 Broken SU(3) and the naive quark model 39.1The Gell-Mann–Okubo mass formula derived 39.2The Gell-Mann–Okubo mass formula applied 39.3The Gell-Mann–Okubo mass formula challenged 39.4The naive quark model (and how it grew) 39.5What can you build out of three quarks? 39.6A sketch of quantum chromodynamics Problems 21 Solutions 21 40 Weak interactions and their currents 40.1The weak interactions circa 1965 40.2The conserved vector current hypothesis 40.3The Cabibbo angle 40.4The Goldberger–Treiman relation 41 Current algebra and PCAC 41.1The PCAC hypothesis and its interpretation 41.2Two isotriplet currents 41.3The gradient-coupling model 41.4Adler’s Rule for the emission of a soft pion 41.5Equal-time current commutators Problems 22 Solutions 22 42 Current algebra and pion scattering 42.1Pion–hadron scattering without current algebra 42.2Pion–hadron scattering and current algebra 42.3Pion–pion scattering 42.4Some operators and their eigenvalues 43 A first look at spontaneous symmetry breaking 43.1The man in a ferromagnet 43.2Spontaneous symmetry breaking in field theory: Examples 43.3Spontaneous symmetry breaking in field theory: The general case 43.4Goldstone’s Theorem Problems 23 Solutions 23 44 Perturbative spontaneous symmetry breaking 44.1One vacuum or many? 44.2Perturbative spontaneous symmetry breaking in the general case 44.3Calculating the effective potential 44.4The physical meaning of the effective potential 45 Topics in spontaneous symmetry breaking 45.1Three heuristic aspects of the effective potential 45.2Fermions and the effective potential 45.3Spontaneous symmetry breaking and soft pions: the sigma model 45.4The physics of the sigma model Problems 24 Solutions 24 46 The Higgs mechanism and non-Abelian gauge fields 46.1The Abelian Higgs model 46.2Non-Abelian gauge field theories 46.3Yang–Mills fields and spontaneous symmetry breaking 47 Quantizing non-Abelian gauge fields 47.1Quantization of gauge fields by the Faddeev–Popov method 47.2Feynman rules for a non-Abelian gauge theory 47.3Renormalization of pure gauge field theories 47.4The effective potential for a gauge theory Problems 25 Solutions 25 48 The Glashow–Salam–Weinberg Model I. A theory of leptons 48.1Putting the pieces together 48.2The electron-neutrino weak interactions 48.3Electromagnetic interactions of the electron and neutrino 48.4Adding in the other leptons 48.5Summary and outlook 49 The Glashow–Salam–Weinberg Model II. Adding quarks 49.1A simplified quark model 49.2Charm and the GIM mechanism 49.3Lower bounds on scalar boson masses 50 The Renormalization Group 50.1The renormalization group for ϕ4 theory 50.2The renormalization group equation 50.3The solution to the renormalization group equation 50.4Applications of the renormalization group equation Concordance of videos and chapters Index