دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mor Harchol-Balter
سری:
ISBN (شابک) : 9781009309073
ناشر: Cambridge University Press (CUP)
سال نشر: 2024
تعداد صفحات: 571
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Introduction to Probability for Computing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر احتمالات برای محاسبات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک کتاب درسی بسیار جذاب و تعاملی در مقطع کارشناسی که به طور خاص برای دوره های علوم کامپیوتر نوشته شده است.
A highly engaging and interactive undergraduate textbook specifically written for computer science courses.
Part I: Fundamentals and Probability on Events 1 Before We Start ... Some Mathematical Basics pdf 1.1 Review of Simple Series 1.2 Review of Double Integrals and Sums 1.3 Fundamental Theorem of Calculus 1.4 Review of Taylor Series and Other Limits 1.5 A Little Combinatorics 1.6 Review of Asymptotic Notation 1.7 Exercises 2 Probability on Events pdf 2.1 Sample Space and Events 2.2 Probability Defined on Events 2.3 Conditional Probabilities on Events 2.4 Independent Events 2.5 Law of Total Probability 2.6 Bayes' Law 2.7 Exercises Part II: Discrete Random Variables 3 Common Discrete Random Variables pdf 3.1 Random Variables 3.2 Common Discrete Random Variables 3.2.1 The Bernoulli Random Variable 3.2.2 The Binomial Random Variable 3.2.3 The Geometric Random Variable 3.2.4 The Poisson Random Variable 3.3 Multiple Random Variables and Joint Probabilities 3.4 Exercises 4 Expectation pdf 4.1 Expectation of a Discrete Random Variable 4.2 Linearity of Expectation 4.3 Conditional Expectation 4.4 Computing Expectations via Conditioning 4.5 Simpson's Paradox 4.6 Exercises 5 Variance, Higher Moments, and Random Sums pdf 5.1 Higher Moments 5.2 Variance 5.3 Alternative Definitions of Variance 5.4 Properties of Variance 5.5 Summary Table for Discrete Distributions 5.6 Covariance 5.7 Central Moments 5.8 Sum of a Random Number of Random Variables 5.9 Tails 5.9.1 Simple Tail Bounds 5.9.2 Stochastic Dominance 5.10 Jensen's Inequality 5.11 Inspection Paradox 5.12 Exercises 6 z-Transforms pdf 6.1 Motivating Examples 6.2 The Transform as an Onion 6.3 Creating the Transform: Onion Building 6.4 Getting Moments: Onion Peeling 6.5 Linearity of Transforms 6.6 Conditioning 6.7 Using z-Transforms to Solve Recurrence Relations 6.8 Exercises Part III: Continuous Random Variables 7 Continuous Random Variables: Single Distribution pdf 7.1 Probability Density Functions 7.2 Common Continuous Distributions 7.3 Expectation, Variance, and Higher Moments 7.4 Computing Probabilities by Conditioning on a R.V. 7.5 Conditional Expectation and the Conditional Density 7.6 Exercises 8 Continuous Random Variables: Joint Distributions pdf 8.1 Joint Densities 8.2 Probability Involving Multiple Random Variables 8.3 Pop Quiz 8.4 Conditional Expectation for Multiple Random Variables 8.5 Linearity and Other Properties 8.6 Exercises 9 Normal Distribution pdf 9.1 Definition 9.2 Linear Transformation Property 9.3 The Cumulative Distribution Function 9.4 Central Limit Theorem 9.5 Exercises 10 Heavy Tails: The Distributions of Computing pdf 10.1 Tales of Tails 10.2 Increasing versus Decreasing Failure Rate 10.3 UNIX Process Lifetime Measurements 10.4 Properties of the Pareto Distribution 10.5 The Bounded-Pareto Distribution 10.6 Heavy Tails 10.7 The Benefits of Active Process Migration 10.8 From the 1990s to the 2020s 10.9 Pareto Distributions Are Everywhere 10.10 Summary Table for Continuous Distributions 10.11 Exercises 11 Laplace Transforms pdf 11.1 Motivating Example 11.2 The Transform as an Onion 11.3 Creating the Transform: Onion Building 11.4 Getting Moments: Onion Peeling 11.5 Linearity of Transforms 11.6 Conditioning 11.7 Combining Laplace and z-Transforms 11.8 One Final Result on Transforms 11.9 Exercises Part IV: Computer Systems Modeling and Simulation 12 The Poisson Process pdf 12.1 Review of the Exponential Distribution 12.2 Relating the Exponential Distribution to the Geometric 12.3 More Properties of the Exponential 12.4 The Celebrated Poisson Process 12.5 Number of Poisson Arrivals during a Random Time 12.6 Merging Independent Poisson Processes 12.7 Poisson Splitting 12.8 Uniformity 12.9 Exercises 13 Generating Random Variables for Simulation pdf 13.1 Inverse Transform Method 13.1.1 The Continuous Case 13.1.2 The Discrete Case 13.2 Accept-Reject Method 13.2.1 Discrete Case 13.2.2 Continuous Case 13.2.3 A Harder Problem 13.3 Readings 13.4 Exercises 14 Event-Driven Simulation pdf 14.1 Some Queueing Definitions 14.2 How to Run a Simulation 14.3 How to Get Performance Metrics from Your Simulation 14.4 More Complex Examples 14.5 Exercises Part V: Statistical Inference 15 Estimators for Mean and Variance pdf 15.1 Point Estimation 15.2 Sample Mean 15.3 Desirable Properties of a Point Estimator 15.4 An Estimator for Variance 15.4.1 Estimating the Variance when the Mean is Known 15.4.2 Estimating the Variance when the Mean is Unknown 15.5 Estimators Based on the Sample Mean 15.6 Exercises 15.7 Acknowledgment 16 Classical Statistical Inference pdf 16.1 Towards More General Estimators 16.2 Maximum Likelihood Estimation 16.3 More Examples of ML Estimators 16.4 Log Likelihood 16.5 MLE with Data Modeled by Continuous Random Variables 16.6 When Estimating More than One Parameter 16.7 Linear Regression 16.8 Exercises 16.9 Acknowledgment 17 Bayesian Statistical Inference pdf 17.1 A Motivating Example 17.2 The MAP Estimator 17.3 More Examples of MAP Estimators 17.4 Minimum Mean Square Error Estimator 17.5 Measuring Accuracy in Bayesian Estimators 17.6 Exercises 17.7 Acknowledgment Part VI: Tail Bounds and Applications 18 Tail Bounds pdf 18.1 Markov's Inequality 18.2 Chebyshev's Inequality 18.3 Chernoff Bound 18.4 Chernoff Bound for Poisson Tail 18.5 Chernoff Bound for Binomial 18.6 Comparing the Different Bounds and Approximations 18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4 18.8 A (Sometimes) Stronger Chernoff Bound for Binomial 18.9 Other Tail Bounds 18.10 Appendix: Proof of Lemma 18.5 18.11 Exercises 19 Applications of Tail Bounds: Confidence Intervals and Balls and Bins pdf 19.1 Interval Estimation 19.2 Exact Confidence Intervals 19.2.1 Using Chernoff Bounds to Get Exact Confidence Intervals 19.2.2 Using Chebyshev Bounds to Get Exact Confidence Intervals 19.2.3 Using Tail Bounds to Get Exact Confidence Intervals in General Settings 19.3 Approximate Confidence Intervals 19.4 Balls and Bins 19.5 Remarks on Balls and Bins 19.6 Exercises 20 Hashing Algorithms pdf 20.1 What is Hashing? 20.2 Simple Uniform Hashing Assumption 20.3 Bucket Hashing with Separate Chaining 20.4 Linear Probing and Open Addressing 20.5 Cryptographic Signature Hashing 20.6 Remarks 20.7 Exercises Part VII: Randomized Algorithms 21 Las Vegas Randomized Algorithms pdf 21.1 Randomized versus Deterministic Algorithms 21.2 Las Vegas versus Monte Carlo 21.3 Review of Deterministic Quicksort 21.4 Randomized Quicksort 21.5 Randomized Selection and Median-Finding 21.6 Exercises 22 Monte Carlo Randomized Algorithms pdf 22.1 Randomized Matrix-Multiplication Checking 22.2 Randomized Polynomial Checking 22.3 Randomized Min-Cut 22.4 Related Readings 22.5 Exercises 23 Primality Testing pdf 23.1 Naive Algorithms 23.2 Fermat's Little Theorem 23.3 Fermat Primality Test 23.4 Miller-Rabin Primality Test 23.4.1 A New Witness of Compositeness 23.4.2 Logic Behind the Miller-Rabin Test 23.4.3 Miller-Rabin Primality Test 23.5 Readings 23.6 Appendix: Proof of Theorem 23.9 23.7 Exercises Part VIII: Discrete-Time Markov Chains 24 Discrete-Time Markov Chains: Finite-State pdf 24.1 Our First Discrete-Time Markov Chain 24.2 Formal Definition of a DTMC 24.3 Examples of Finite-State DTMCs 24.3.1 Repair Facility Problem 24.3.2 Umbrella Problem 24.3.3 Program Analysis Problem 24.4 Powers of P: n-Step Transition Probabilities 24.5 Limiting Probabilities 24.6 Stationary Equations 24.7 The Stationary Distribution Equals the Limiting Distribution 24.8 Examples of Solving Stationary Equations 24.9 Exercises 25 Ergodicity for Finite-State Discrete-Time Markov Chains pdf 25.1 Some Examples on Whether the Limiting Distribution Exists 25.2 Aperiodicity 25.3 Irreducibility 25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 25.5 Mean Time Between Visits to a State 25.6 Long-Run Time Averages 25.6.1 Strong Law of Large Numbers 25.6.2 A Bit of Renewal Theory 25.6.3 Equality of the Time Average and Ensemble Average 25.7 Summary of Results for Ergodic Finite-State DTMCs 25.8 What If My DTMC Is Irreducible but Periodic? 25.9 When the DTMC Is Not Irreducible 25.10 An Application: PageRank 25.10.1 Problems with Real Web Graphs 25.10.2 Google's Solution to Dead Ends and Spider Traps 25.10.3 Evaluation of the PageRank Algorithm and Practical Considerations 25.11 From Stationary Equations to Time-Reversibility Equations 25.12 Exercises 26 Discrete-Time Markov Chains: Infinite-State pdf 26.1 Stationary = Limiting 26.2 Solving Stationary Equations in Infinite-State DTMCs 26.3 A Harder Example of Solving Stationary Equations in Infinite-State DTMCs 26.4 Ergodicity Questions 26.5 Recurrent versus Transient: Will the Fish Return to Shore? 26.6 Infinite Random Walk Example 26.7 Back to the Three Chains and the Ergodicity Question 26.8 Why Recurrence Is Not Enough 26.9 Ergodicity for Infinite-State Chains 26.10 Exercises 27 A Little Bit of Queueing Theory pdf 27.1 What Is Queueing Theory? 27.2 A Single-Server Queue 27.3 Kendall Notation 27.4 Common Performance Metrics 27.5 Another Metric: Throughput 27.5.1 Throughput for M/G/k 27.5.2 Throughput for Network of Queues with Probabilistic Routing 27.5.3 Throughput for Network of Queues with Deterministic Routing 27.5.4 Throughput for Finite Buffer 27.6 Utilization 27.7 Introduction to Little's Law 27.8 Intuitions for Little's Law 27.9 Statement of Little's Law 27.10 Proof of Little's Law 27.11 Important Corollaries of Little's Law 27.12 Exercises