دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: احتمال ویرایش: 1st نویسندگان: David F. Anderson, Timo Seppäläinen, Benedek Valkó سری: Cambridge Mathematical Textbooks ISBN (شابک) : 1108415857, 9781108415859 ناشر: Cambridge University Press سال نشر: 2017 تعداد صفحات: 416 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب معرفی به احتمال: احتمال، اندرسون، مقدمه، والکو، seppalainen، کمبریج
در صورت تبدیل فایل کتاب Introduction to Probability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معرفی به احتمال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
CAMBRIDGE MATHEMATICAL TEXTBOOKS Contents Preface To the instructor From gambling to an essential ingredient of modern science and society Experiments with random outcomes 1.1. Sample spaces and probabilities 1.2. Random sampling 1.3. Infinitely many outcomes 1.4. Consequences of the rules of probability 1.5. Random variables: a first look 1.6. Finer points 4> Exercises Further exercises Challenging problems 2 Conditional probability and independence 2.1. Conditional probability 2.2. Bayes\' formula 2.3. Independence A В 2.4. Independent trials r(N > 7) = = И = £ (I)*\"1 i = HI)7 E (If = frr = (I)7 - 2.5. Further topics on sampling and independence 2.6. Finer points 4» Exercises Further exercises w=e=A©1- Challenging problems Random variables 3.1. Probability distributions of random variables fix) = I0’ 3.2. Cumulative distribution function 3.3. Expectation E^\"1 = E^Uk)=^ (У?) =£да=ч. 3.4. Variance Summary of properties of random variables 3.5. Gaussian distribution Fact 3.56. Density function Range, support, and possible values of a random variable Continuity of a random variable Properties of the cumulative distribution function Expectation Moments Quantiles Exercises Section 3.1 Section 3.4 Section 3.5 Further exercises Challenging problems Approximations of the binomial distribution 4.1. Normal approximation The CLT for the binomial and examples / e 2 dx. a \'flu Continuity correction A partial proof of the CLT for the binomial ♦ 4.2. Law of large numbers 4.3. Applications of the normal approximation Confidence intervals Polling 4.4. Poisson approximation Poisson approximation of counts of rare events Comparison of the normal and Poisson approximations of the binomial 4.5. Exponential distribution Derivation of the exponential distribution ♦ 4.6. Poisson process ♦ ( rwe = Error bound in the normal approximation Weak versus strong law of large numbers The memoryless property Spatial Poisson processes Exercises Section 4. 1 Section 4. 2 Section 4. 3 Section 4. 4 Section 4. 5 Section 4.6 Further exercises Challenging problems Transforms and transformations 5.1. Moment generating function Calculation of moments with the moment generating function Equality in distribution w)]=E =E ^x]p[Y=x]=л]. Identification of distributions with moment generating functions 5.2. Distribution of a function of a random variable Discrete case Continuous case Generating random variables from a uniform distribution ♦ Equality in distribution Transforms of random variables Section 5.1 Section 5.2 Further exercises Challenging problems Joint distribution of random variables 6.1. Joint distribution of discrete random variables 6.2. Jointly continuous random variables J—oo J—oo Jo \\Jo / Jo • • • / f(xb... ,Xj_bx, Xj+1,..., xn) dXi... dXj-1 dxj+1 ...dxn. fx(x]= [ fx,y(x,y]dy. (6.13) J—OQ dx. Uniform distribution in higher dimensions Nonexistence of joint density function ♦ 6.3. Joint distributions and independence Further examples: the discrete case Further examples: the jointly continuous case 6.4. Further multivariate topics ♦ Joint cumulative distribution function J—OQ J —OO Standard bivariate normal distribution Infinitesimal method Transformation of a joint density function fR(r) = Zero probability events for jointly continuous random variables Measurable subsets of Rn Joint moment generating function Section 6.1 Section 6.2 Section 6. 3 Section 6. 4 Further exercises Challenging problems Sums and symmetry 7.1. Sums of independent random variables 7.2. Exchangeable random variables ад еВ1,Х2еВ2,...,^,еВя) Independent identically distributed random variables Sampling without replacement 7.3. Poisson process revisited ♦ Exercises Section 7. 1 Section 7. 2 Section 7. 3 Further exercises Challenging problems 8 Expectation and variance in the multivariate setting 8.1. Linearity of expectation 8.2. Expectation and independence Sample mean and sample variance Coupon collector\'s problem 8.3. Sums and moment generating functions 8.4. Covariance and correlation Variance of a sum = 53 ад - Mx,)2]+52 52 - ^)(Xj - MX, )] Uncorrelated versus independent random variables Properties of the covariance Correlation 8.5. The bivariate normal distribution ♦ Independence and expectations of products Multivariate normal distribution Details of expectations and measure theory Exercises Section 8. 1 Section 8. 2 Section 8. 3 Section 8. 4 Section 8. 5 Further exercises Challenging problems Tail bounds and limit theorems 9.1. Estimating tail probabilities 9.2. Law of large numbers £ZW 9.3. Central limit theorem Proof of the central limit theorem ♦ 9.4. Monte Carlo method ♦ Confidence intervals J a JW Generalizations of Markov\'s inequality The strong law of large numbers Proof of the central limit theorem Error bound in the central limit theorem Section 9.1 Section 9. 2 Section 9. 3 Section 9. 4 Further exercises Challenging problems lim E 10 Conditional distribution 10.1. Conditional distribution of a discrete random variable Conditioning on an event Conditioning on a random variable ( n nn~m~e Constructing joint probability mass functions Marking Poisson arrivals e~P^(p^ е-Р^Ык2 е~Р^(р3к)кз fej Ы 10.2. Conditional distribution for jointly continuous random variables Constructing joint density functions Justification for the formula of the conditional density function ♦ 10.3. Conditional expectation Conditional expectation as a random variable J—OQ J—OQ Multivariate conditional distributions Examples Conditioning and independence Conditioning on the random variable itself £(X|X) = X. Conditioning on a random variable fixes its value ♦ =E 10.4. Further conditioning topics ♦ Conditional moment generating function Mixing discrete and continuous random variables Conditional expectation as the best predictor ВДП Random sums Trials with unknown success probability J a Conditioning on multiple random variables: a prelude to stochastic processes P($n = Xn, Yn+1 = Xn+1 Xn) P(Sn = Xn) P(Yn+l = -fn+1 %n) P(Sn = xn) P(Sn = xn) Conditional expectation Exercises Section 10.1 Section 10.2 Section 10.3 Section 10.4 Further exercises Challenging problems Appendix A Things to know from calculus Appendix В Set notation and operations Exercises Challenging problems Appendix С Counting Fact C.5. Let Ab A2,... ,A„ be finite sets. # (Ai x A2 x • • • x An) = (#Ai) • (#A2) • • • (#A„) = f[(#Ai). Practical advice Proof by induction Exercises Exercises to practice induction Appendix D Sums, products and series Sum and product notation Infinite series Changing order of summation (ii)if 5222lflijl = 2222^- Summation identities Exercises ^EE* (c) EE(7 + 2fe + £) Challenging problems Appendix E Table of values for Ф(х) Appendix F Table of common probability distributions Answers to selected exercises Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Airily) = Appendix В Appendix C Bibliography Index