دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dharmaraja Selvamuthu. Dipayan Das.
سری:
ISBN (شابک) : 9789819993628, 9789819993635
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 623
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Introduction to Probability, Statistical Methods, Design of Experiments and Statistical Quality Control به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر احتمال، روش های آماری، طراحی آزمایش ها و کنترل کیفیت آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصلاح شده ارائه ای قابل دسترس از مفاهیم نظریه احتمال، روش های آماری، طراحی آزمایش ها و کنترل کیفیت آماری را ارائه می دهد. این توسط تجربه دو معلم آموزش روش ها و مفاهیم آماری به دانشجویان مهندسی شکل گرفته است. مثالهای عملی و تمرینهای پایان فصل از نکات برجسته متن هستند، زیرا به طور عمدی از زمینههای مختلف انتخاب شدهاند. اصول آماری مورد بحث در کتاب در چندین رشته مانند اقتصاد، بازرگانی، مهندسی، پزشکی، مراقبت های بهداشتی، کشاورزی، بیوشیمی و نساجی ارتباط زیادی دارد. کتاب اصلاح شده که در 16 فصل سازماندهی شده است، چهار موضوع اصلی را مورد بحث قرار می دهد - نظریه احتمال، روش های آماری، طراحی آزمایش ها و کنترل کیفیت آماری. تعداد زیادی از دانشآموزان با سوابق رشتهای متنوع به دورهای در مبانی آمار، طراحی آزمایشها و کنترل کیفیت آماری در سطح مقدماتی نیاز دارند تا رشته مورد علاقه خود را دنبال کنند. هیچ دانش قبلی از احتمال یا آمار فرض نمی شود، اما درک حساب دیفرانسیل و انتگرال یک پیش نیاز است. کل کتاب همچنین به عنوان یک دوره مقدماتی در سطح کارشناسی ارشد در هر سه موضوع مورد نیاز در مهندسی نساجی یا مهندسی صنایع است.
This revised book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments, and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students. Practical examples and end-of-chapter exercises are the highlights of the text, as they are purposely selected from different fields. Statistical principles discussed in the book have a great relevance in several disciplines like economics, commerce, engineering, medicine, health care, agriculture, biochemistry, and textiles to mention a few. Organised into 16 chapters, the revised book discusses four major topics—probability theory, statistical methods, the design of experiments, and statistical quality control. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book also serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering.
Foreword for the Second Edition Foreword for the First Edition Preface for the Second Edition Preface for the First Edition Contents About the Authors Acronyms Mathematical Notations 1 Introduction 1.1 A Brief Introduction to the Book 1.2 Probability 1.2.1 History 1.3 Statistical Methods 1.3.1 Problem of Data Representation 1.3.2 Problem of Fitting the Distribution to the Data 1.3.3 Problem of Estimation of Parameters 1.3.4 Problem of Testing of Hypothesis 1.3.5 Problem of Correlation and Regression 1.4 Design of Experiments 1.4.1 History 1.4.2 Necessity 1.4.3 Applications 1.5 Statistical Quality Control References Part I Probability 2 Basic Concepts of Probability 2.1 Basics of Probability 2.2 Definition of Probability 2.3 Conditional Probability 2.4 Total Probability Rule 2.5 Bayes' Theorem 2.6 Problems References 3 Random Variables and Expectations 3.1 Random Variable 3.1.1 Discrete Type Random Variable 3.1.2 Continuous Type Random Variable 3.1.3 Mixed Type of Random Variable 3.1.4 Function of a Random Variable 3.2 Moments 3.2.1 Mean 3.2.2 Variance 3.2.3 Moment of Order nn 3.3 Generating Functions 3.3.1 Probability Generating Function 3.3.2 Moment Generating Function 3.3.3 Characteristic Function 3.4 Problems References 4 Standard Distributions 4.1 Standard Discrete Distributions 4.1.1 Bernoulli, Binomial, and Geometric Distributions 4.1.2 Poisson Distribution 4.1.3 Discrete Uniform Distribution 4.1.4 Hypergeometric Distribution 4.2 Standard Continuous Distributions 4.2.1 Uniform Distribution 4.2.2 Normal Distribution 4.2.3 Exponential, Gamma, and Beta Distributions 4.2.4 Weibull, Pareto, and Rayleigh Distributions 4.3 Problems References 5 Multiple Random Variables and Joint Distributions 5.1 Two-Dimensional Random Variables 5.1.1 Discrete Random Variables 5.1.2 Continuous Random Variables 5.2 Independent Random Variables 5.3 Higher Dimensional Random Variables 5.4 Functions of Random Variables 5.4.1 Order Statistics 5.5 Moments of Multivariate Distributions 5.5.1 Variance–Covariance Matrix 5.5.2 Correlation Coefficient 5.6 Generating Functions 5.7 Conditional Distribution 5.8 Conditional Expectation and Conditional Variance 5.9 Problems References 6 Limiting Distributions 6.1 Inequalities 6.1.1 Markov's Inequality 6.1.2 Chebyshev's Inequality 6.1.3 Inequality with Higher Order Moments 6.2 Modes of Convergence 6.2.1 Convergence in Probability 6.2.2 Convergence in Distribution 6.2.3 Convergence in Moment of Order rr 6.2.4 Almost Sure Convergence 6.3 The Weak Law of Large Numbers 6.4 The Strong Law of Large Numbers 6.5 Central Limit Theorem 6.6 Problems References Part II Statistical Methods 7 Descriptive Statistics 7.1 Introduction 7.2 Data, Information, and Description 7.2.1 Types of Data 7.2.2 Data, Information, and Statistic 7.2.3 Frequency Tables 7.2.4 Graphical Representations of Data 7.3 Descriptive Measures 7.3.1 Central Tendency Measures 7.3.2 Variability Measures 7.3.3 Coefficient of Variation 7.3.4 Displaying the Measures and Preparing Reports 7.4 Problems Reference 8 Sampling Distributions 8.1 Introduction 8.2 Standard Sampling Distributions 8.2.1 Chi-Square Distribution 8.2.2 Student's tt-Distribution 8.2.3 upper FF-Distribution 8.3 Sampling Distribution 8.3.1 Sample Mean 8.3.2 Sample Variance 8.3.3 Empirical Distribution 8.3.4 Order Statistics 8.4 Some Important Results on Sampling Distributions 8.5 Problems References 9 Estimation 9.1 Point Estimation 9.1.1 Definition of Point Estimators 9.1.2 Properties of Estimators 9.1.3 Cramér Rao Inequality 9.2 Methods of Point Estimation 9.2.1 Method of Moments 9.2.2 Method of Maximum Likelihood 9.2.3 Bayesian Method 9.2.4 Asymptotic Distribution of MLEs 9.3 Interval Estimation 9.3.1 Confidence Interval 9.4 Problems References 10 Testing of Hypothesis 10.1 Testing of Statistical Hypothesis 10.1.1 Null and Alternate Hypothesis 10.1.2 Neyman–Pearson Theory 10.1.3 Likelihood Ratio Test 10.1.4 Test for the Population Mean 10.1.5 Test for the Variance 10.1.6 Test for the Distribution 10.1.7 Testing Regarding Contingency Tables 10.1.8 Test Regarding Proportions 10.2 Nonparametric Statistical Tests 10.2.1 Sign Test 10.2.2 Median Test 10.2.3 Kolmogorov Smirnov Test 10.2.4 Mann–Whitney Wilcoxon U Test 10.3 Analysis of Variance 10.4 Problems References 11 Analysis of Correlation and Regression 11.1 Introduction 11.2 Correlation 11.2.1 Causality 11.2.2 Rank Correlation 11.3 Multiple Correlation 11.3.1 Partial Correlation 11.4 Regression 11.4.1 Least Squares Method 11.4.2 Unbiased Estimator Method 11.4.3 Hypothesis Testing Regarding Regression Parameters 11.4.4 Confidence Interval for beta 1β1 11.4.5 Regression to the Mean 11.4.6 Inferences Covering beta 0β0 11.4.7 Inferences Concerning the Mean Response of beta 0 plus beta 1 x 0β0 + β1 x0 11.5 Logistic Regression 11.5.1 Estimates of aa and bb 11.6 Problems References Part III Design of Experiments 12 Single-Factor Experimental Design 12.1 Introduction 12.2 Completely Randomized Design 12.2.1 A Practical Problem 12.2.2 Data Visualization 12.2.3 Descriptive Model 12.2.4 Test of Hypothesis 12.2.5 Multiple Comparison Among Treatment Means (Tukey's Test) 12.3 Randomized Block Design 12.3.1 A Practical Problem 12.3.2 Data Visualization 12.3.3 Descriptive Model 12.3.4 Test of Hypothesis 12.3.5 Multiple Comparison Among Treatment Means 12.4 Latin Square Design 12.4.1 A Practical Problem 12.4.2 Data Visualization 12.4.3 Descriptive Model 12.4.4 Test of Hypothesis 12.4.5 Multiple Comparison Among Treatment Means 12.5 Balanced Incomplete Block Design 12.5.1 A Practical Problem 12.5.2 Experimental Data 12.5.3 Descriptive Model 12.5.4 Test of Hypothesis 12.6 Problems Reference 13 Multifactor Experimental Designs 13.1 Introduction 13.2 Two-Factor Factorial Design 13.2.1 A Practical Problem 13.2.2 Descriptive Model 13.2.3 Test of Hypothesis 13.2.4 Multiple Comparison Among Treatment Means 13.3 Three-Factor Factorial Design 13.3.1 A Practical Problem 13.3.2 Descriptive Model 13.3.3 Test of Hypothesis 13.4 2 squared22 Factorial Design 13.4.1 Display of 2 squared22 Factorial Design 13.4.2 Analysis of Effects in 2 squared22 Factorial Design 13.4.3 A Practical Problem 13.4.4 Regression Model 13.4.5 Response Surface 13.5 2 cubed23 Factorial Design 13.5.1 Display of 2 cubed23 Factorial Design 13.5.2 Analysis of Effects in 2 cubed23 Factorial Design 13.5.3 Yates' Algorithm 13.5.4 A Practical Example 13.6 Blocking and Confounding 13.6.1 Replicates as Blocks 13.6.2 Confounding 13.6.3 A Practical Example 13.7 Two-Level Fractional Factorial Design 13.7.1 Creation of 2 Superscript 3 minus 123-1 Factorial Design 13.7.2 Analysis of Effects in 2 Superscript 3 minus 123-1 Factorial Design with upper I equals upper A upper B upper CI=ABC 13.7.3 Creation of Another 2 Superscript 3 minus 123-1 Factorial Design with upper I equals minus upper A upper B upper CI=-ABC 13.7.4 Analysis of Effects in 2 Superscript 3 minus 123-1 Factorial Design with upper I equals minus upper A upper B upper CI=-ABC 13.7.5 A Practical Example of 2 Superscript 3 minus 123-1 Factorial Design 13.7.6 A Practical Example of 2 Superscript 4 minus 124-1 Factorial Design 13.7.7 Design Resolution 13.8 Problems Reference 14 Response Surface Methodology 14.1 Introduction 14.2 Response Surface Models 14.3 Multiple Linear Regression 14.3.1 A Generalized Model 14.3.2 Estimation of Coefficients: Least Square Method 14.3.3 Estimation of Variance sigma squaredσ2 of Error Term 14.3.4 Point Estimate of Coefficients 14.3.5 Hypothesis Test for Significance of Regression 14.3.6 Hypothesis Test on Individual Regression Coefficient 14.3.7 Interval Estimates of Regression Coefficients 14.3.8 Point Estimation of Mean 14.3.9 Adequacy of Regression Model 14.4 Analysis of First-Order Model 14.5 Analysis of Second-Order Model 14.5.1 Location of Stationary Point 14.5.2 Nature of Stationary Point 14.6 Response Surface Designs 14.6.1 Designs for Fitting First-Order Model 14.6.2 Experimental Designs for Fitting Second-Order Model 14.7 Multifactor Optimization 14.8 Problems References Part IV Statistical Quality Control 15 Acceptance Sampling 15.1 Introduction 15.2 Acceptance Sampling 15.3 Single Sampling Plan for Attributes 15.3.1 Definition of a Single Sampling Plan 15.3.2 Operating Characteristic Curve 15.3.3 Acceptable Quality Level 15.3.4 Rejectable Quality Level 15.3.5 Designing an Acceptance Sampling Plan 15.3.6 Effect of Sample Size on OC Curve 15.3.7 Effect of Acceptance Number on OC Curve 15.4 Double Sampling Plan for Attributes 15.5 Sequential Sampling Plan for Attributes 15.6 Rectifying Sampling Plans for Attributes 15.7 Acceptance Sampling of Variables 15.7.1 Acceptance Sampling Plan 15.7.2 The Producer's Risk Condition 15.7.3 The Consumer's Risk Condition 15.7.4 Designing of Acceptance Sampling Plan 15.8 Problems Reference 16 Control Charts 16.1 Introduction 16.2 Control Charts 16.2.1 Basis of Control Charts 16.2.2 Major Parts of a Control Chart 16.2.3 Statistical Basis for Choosing kk Equal to 3 16.2.4 Analysis of Control Chart 16.3 Types of Shewhart Control Charts 16.3.1 The Mean Chart 16.3.2 The Range Chart 16.3.3 The Standard Deviation Chart (s-Chart) 16.4 Process Capability Analysis 16.5 Control Chart for Fraction Defectives 16.6 Control Chart for the Number of Defectives 16.7 Control Chart for the Number of Defects 16.8 CUSUM Control Chart 16.9 Exponentially Weighted Moving Average Control Chart 16.9.1 Basics of EWMA 16.9.2 Construction of EWMA Control Chart 16.9.3 Choice of upper LL and lamdaλ 16.10 Problems References Appendix A Statistical Tables Index