دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Tahir Iqbal Awan, Sumera Afsheen, Iqra Maryam سری: ISBN (شابک) : 9781032516516, 9781003403357 ناشر: CRC Pressr سال نشر: 2024 تعداد صفحات: 312 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Introduction to Photocatalysis; Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر فوتوکاتالیز; مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با مقدمه ای بر فوتوکاتالیز: مبانی و کاربردها، دنیای جذاب فوتوکاتالیز را کاوش کنید. این کتاب پیچیدگیهای فرآیندهای فوتوکاتالیستی، بررسی عناصر کمککننده، روشهای تولید نانو فوتوکاتالیست و کاربردهای گسترده آنها در بخشهای انرژی و محیط زیست را بررسی میکند. علاوه بر این، روشهای اصلاح پیچیدهای که ممکن است برای بهبود کارایی فرآیندهای مبتنی بر نور مرئی (مانند دوپینگ و فوتوکاتالیز پلاسمونیک) مورد استفاده قرار گیرند، مورد بحث قرار میگیرند. ویژگیهای کلیدی شامل روششناسی جدید فوتوکاتالیستها، ارائه بینشی در مورد اصول و روششناسی است. و نمونه هایی از کاربردهای کارآمد فوتوکاتالیز مانند تصفیه فاضلاب، تولید هیدروژن و کاهش CO2. فصلهای بعدی جنبههای تجاری فوتوکاتالیز را مورد بحث قرار میدهند تا به راهنمایی کارآفرینان آینده کمک کنند. این کتاب برای دانشجویان پیشرفته در مقطع کارشناسی و کارشناسی ارشد در طیف وسیعی از موضوعات مانند فیزیک، بیوتکنولوژی و بیوشیمی مفید است. این کتاب همچنین برای محققان و دانشمندان فتوکاتالیزور و مهندسین شیمی و شیمیدانان در تحقیق و توسعه صنعت که بر روی تصفیه فاضلاب و منابع تجدیدپذیر انرژی کار می کنند بسیار ارزشمند خواهد بود. این به عنوان نسخه مدرنیزه شده از ادبیات کنونی که شکاف بین دانش پژوهان و دانشجویان را پر می کند برجسته می شود.
Explore the intriguing world of photocatalysis with Introduction to Photocatalysis: Fundamentals and Applications. This book explores the complexities of photocatalytic processes, investigating the contributing elements, nano-photocatalyst manufacturing methodologies, and their wide applications in the energy and environmental sectors. Additionally, sophisticated modification approaches that may be used to improve the efficiency of visible light-driven processes (such as doping and plasmonics photocatalysis) are discussed. Key features include novel methodologies of photocatalysts, providing an insight on fundamentals and methodology; and examples of efficient applications of photocatalysis such as wastewater treatment, hydrogen production and CO2 reduction. Later chapters discuss the commercial aspects of photocatalysis to help guide future entrepreneurs. The book is useful for advanced undergraduates, and graduate students in a range of subjects such as physics, biotechnology, and biochemistry. This book will also prove invaluable for researchers and scientists in photocatalysis, and chemical engineers and chemists in industry R&D working on wastewater treatment and renewable sources of energy. It stands out as a modernized version of current literature that bridges the gap between scholars and students.
Cover Half Title Title Copyright Table of Contents Acknowledgement Part I Fundamentals 1 Introduction to Photocatalysis 1.1 Introduction 1.2 Different Types of Materials as Photocatalyst 1.3 Basic Principles and Mechanism of Photocatalysis 1.3.1 Oxidation Mechanism 1.3.2 Reduction Mechanism 1.3.3 Factors Affecting Photocatalytic Activity 1.4 Limitations/Shortcomings of Photocatalysis 1.5 Literature Review 1.5.1 Titanium Dioxide 1.5.2 Tungsten Trioxide 1.5.3 Zinc Oxide 1.5.4 Copper Oxide 1.6 Summary References 2 Introduction to Plasmonic Photocatalysis 2.1 Introduction 2.1.1 Pure Plasmonic Materials 2.1.2 Hybrid Plasmonic Materials 2.1.3 Alternative Plasmonic Materials 2.2 Nanoplasmonic Photocatalysis in Liquid Phase 2.2.1 Plasmonic-Based Photocatalytic Degradation of Aqueous Contaminants 2.2.2 Organic Synthesis 2.3 Nanoplasmonic Photocatalysis in Gas-Phase Reactions 2.3.1 Photodegradation of Volatile Organic Compounds 2.3.2 Plasmonic-Driven Chemical to Energy Conversion Processes 2.4 Plasmonics in Biocatalytic Processes 2.4.1 Photobiocatalysis 2.4.2 Artificial Enzymes 2.5 Summary References 3 Synthesis Methods for Photocatalytic Materials 3.1 Synthesis Methods for Photocatalytic Materials 3.2 Sol-Gel Process 3.2.1 Construction 3.2.2 Working Principle of Sol-Gel Method 3.2.3 Pros and Cons of Sol-Gel Method 3.3 Hydrothermal Method 3.3.1 Construction 3.3.2 Working Principle of Hydrothermal Method 3.3.3 Pros and Cons of Hydrothermal Method 3.4 Solvothermal Method 3.4.1 Materials and Preparation 3.4.2 Working Principle of Solvothermal Technique 3.4.3 Pros and Cons of Solvothermal Technique 3.5 Direct Oxidation Method 3.5.1 Construction 3.5.2 Working Principle of Direct Oxidation Technique 3.5.3 Pros and Cons of Direct Oxidation Technique 3.6 Sonochemical Method 3.6.1 Construction 3.6.2 Working Principle of Sonochemical Method 3.6.3 Pros and Cons of Sonochemical Method 3.7 Microwave Method 3.7.1 Construction 3.7.2 Working Principle of Microwave Method 3.7.3 Pros and Cons of Microwave Method 3.8 Chemical Vapor Deposition 3.8.1 Construction 3.8.2 Working Principle of Chemical Vapor Deposition 3.8.3 Pros and Cons of Chemical Vapor Deposition 3.9 Physical Vapor Deposition 3.9.1 Construction 3.9.2 Working Principle of Physical Vapor Deposition 3.9.3 Pros and Cons of Physical Vapor Deposition 3.10 Electrochemical Deposition 3.10.1 Construction 3.10.2 Working Principle of Electrochemical Deposition 3.10.3 Pros and Cons of Electrochemical Deposition References 4 Material Characterization Techniques 4.1 Scanning Electron Microscope 4.1.1 Fundamental Principles of Scanning Electron Microscopy 4.1.2 Instrumentation and Working of Scanning Electron Microscopy 4.1.3 Strengths and Limitations 4.2 Scanning Tunneling Microscope 4.2.1 Basic Principle of Scanning Tunneling Microscopy 4.2.2 Construction and Working of Scanning Tunneling Microscopy 4.3 Transmission Electron Microscopy 4.3.1 Instrumentation and Working of Transmission Electron Microscope 4.3.2 Strengths and Limitations 4.4 X-Ray Diffraction 4.4.1 Working of X-Ray Diffraction 4.4.2 Data Interpretation in X-Ray Diffraction 4.4.3 Applications of X-Ray Diffraction 4.4.4 Strengths and Limitations 4.5 Atomic Force Microscope 4.5.1 Why Atomic Force Microscopy? 4.5.2 Working of Atomic Force Microscope 4.5.3 Modes of Operation 4.5.4 Mechanism of Feedback Loop 4.5.5 Limitations 4.6 Surface Composition 4.6.1 X-Ray Photoelectron Spectroscopy 4.6.2 Fundamental Principle and Working of X-Ray Photoelectron Spectroscopy 4.6.3 Data Interpretation 4.6.4 Quantitative Analysis of X-Ray Photoelectron Spectroscopy 4.6.5 Limitations of X-Ray Photoelectron Spectroscopy 4.7 Ultraviolet-Visible Spectroscopy 4.7.1 Instrumentation and Working of UV-Visible Spectroscopy 4.7.2 Data Interpretation 4.7.3 Strengths and Limitations References 5 Fundamentals of Green Photocatalysis 5.1 Introduction 5.2 Green Energy 5.3 Harnessing Solar Energy: Photosynthesis and Photocatalysts 5.4 Advancements in Green Photocatalysis 5.4.1 Solar-Powered Photocatalysis 5.4.2 Metal Oxides 5.4.3 Metal-Doped Oxides 5.4.4 Plasmonic-Enhanced Photocatalysis 5.4.5 Carbon-Based Photocatalysts 5.4.6 Z-Scheme Photocatalysis 5.5 Materials Employed in Environmentally Friendly Photocatalysis 5.6 Summary References Part II Applications 6 Nanostructured Photocatalysts and Applications 6.1 Introduction to Nanostructured Photocatalysts 6.1.1 Fundamentals of Photocatalysis 6.1.2 Types of Photocatalysts 6.2 Operational Parameter’s Effect on Photocatalyst Efficiency 6.2.1 Light Intensity 6.2.2 Nature and Concentration of Substrate 6.2.3 Nature and Concentration of Photocatalyst 6.2.4 pH and Reaction Temperature 6.3 Properties and Characteristics of Photocatalysts: Titania versus Other Photocatalysts 6.3.1 Titania (TiO2) 6.4 Preparation of Nanostructured Photocatalysts 6.4.1 Ultrasonic Preparation of Nanostructured Photocatalysts 6.4.2 Other Non-Conventional Synthesis Methodologies 6.5 Hydrogen Production 6.5.1 Photocatalytic Hydrogen Production 6.6 Future Challenges and Prospects 6.6.1 Difficulties in Synthesis of Nano-photocatalysts 6.6.2 Photocatalysts Employed in Heterogeneous Photocatalysis References 7 Wastewater Treatment 7.1 Water Pollution and Sources of Water Pollution 7.1.1 Direct Pollution 7.1.2 Indirect Water Pollution 7.2 Sources of Natural Runoff 7.2.1 Rainwater 7.2.2 Domestic Sewage 7.2.3 Industrial Wastage 7.3 Photocatalytic Degradation of Organic Pollutants in Water 7.3.1 Photocatalyst Preparation 7.3.2 Light Absorption 7.3.3 Electron-Hole Pair Formation 7.3.4 Reactive Oxygen Species Generation 7.3.5 Catalyst Regeneration 7.4 Factors Influencing Photocatalytic Degradation 7.4.1 Effect of Dye Concentration 7.4.2 Size and Structure of the Photocatalyst 7.4.3 Effect of Light Intensity and Irradiation Time 7.4.4 Effect of pH 7.4.5 Effect of Catalyst Amount 7.5 Water Treatment Methods 7.5.1 Sonolysis 7.5.2 Ozonolysis 7.5.3 UV-Based Advanced Oxidation Processes 7.5.4 Photo-Fento Reactions 7.5.5 Other Advanced Oxidation Processes 7.5.6 Photocatalysis 7.6 Development of Nanomaterials as Adsorbent for Wastewater Treatment 7.6.1 Nano-Adsorbents 7.6.2 Activated Carbon 7.6.3 Carbon Nanotubes 7.6.4 Metal Oxide 7.6.5 Nano Aluminum Oxides 7.7 Photocatalytic Reactor 7.7.1 Fundamental Constituents in the Design of Photocatalytic Reactors 7.8 Types of Photocatalytic Reactors 7.8.1 Slurry Photocatalytic Membrane Reactor 7.8.2 Methods to Enhance Catalyst Efficiency 7.8.3 Comparison of Photocatalytic Reactors 7.9 Summary References 8 Photocatalytic Carbon Dioxide Reduction 8.1 Introduction 8.2 Types of Photocatalytic CO2 Reduction 8.2.1 Gas-Solid Systems 8.2.2 Liquid-Solid Systems 8.2.3 Photocatalytic Reaction Conditions of CO2 Reduction 8.3 Photocatalysis and Photocatalytic Reduction of CO2 with H2O 8.3.1 Photocatalytic Reactions and Mechanisms 8.3.2 Measurement of Photocatalytic Efficiency 8.4 Photocatalytic Materials for CO2 Reduction 8.4.1 Semiconductor Materials for CO2 Photocatalytic Reduction 8.5 Recent Developments of Novel Photocatalysts for CO2 Reduction 8.5.1 Quantum Dots 8.5.2 Metal Chalcogenides 8.5.3 Nanostructured Metals 8.5.4 Artificial Photosynthesis 8.6 Photocatalytic CO2 Reactors 8.6.1 TiO2-Based Photocatalytic CO2 Reactor 8.6.2 ZnO-Based Photocatalytic CO2 Reactor 8.6.3 Solar-Driven Photocatalytic CO2 Reactor 8.6.4 Hybrid Photocatalytic Reactor for CO2 Conversion 8.7 Summary References 9 Photocatalytic Hydrogen Production 9.1 Introduction 9.2 Importance of Hydrogen as an Energy Carrier 9.2.1 Clean Energy Generation and Energy Storage 9.2.2 Transportation Fuel 9.2.3 Grid Balancing and Load Shifting 9.2.4 Carbon-Free Industrial Processes and Environmental Remediation 9.2.5 Hydrogen Economy Advancement and Flexibility 9.3 Role of Photocatalysis in Hydrogen Production 9.3.1 Challenges 9.3.2 Fundamentals of Photocatalysis 9.3.3 Photocatalytic Reactions and Mechanisms 9.4 Photocatalytic Materials for Hydrogen Production 9.4.1 Semiconductor Materials for Photocatalysis 9.4.2 Bandgap Engineering for Efficient Hydrogen Generation 9.4.3 Two-Dimensional Materials as Photocatalysts for H2 Production 9.5 Photocatalytic Mechanisms for Hydrogen Production 9.6 Factors Influencing Photocatalytic Hydrogen Production 9.6.1 Bandgap Energy 9.6.2 Structure/Surface Area 9.6.3 Light Source and Intensity 9.6.4 Reaction Conditions 9.6.5 Oxygen Vacancies 9.7 Photocatalytic Hydrogen Production Systems 9.8 Influence of System Units on Photocatalytic Performance 9.8.1 Sacrificial Agent 9.8.2 Catalyst 9.8.3 Photosensitizer 9.8.4 Solvent 9.9 Conclusion and Future Perspectives References 10 Future Prospects of Photocatalysis 10.1 Commercialization of Photocatalysis for Wastewater Treatment 10.1.1 Environmental Sustainability 10.1.2 Rules and Regulations 10.1.3 Awareness and Demand 10.1.4 Low Budget 10.1.5 Technological Challenges 10.1.6 Economic and Market Challenges 10.1.7 Future Prospects and Opportunities 10.1.8 Emerging Trends and Applications 10.2 Introduction to Photocatalysis for Hydrogen Generation 10.2.1 Hydrogen Production 10.2.2 Water Splitting 10.2.3 Technological Challenges 10.2.4 Economic Challenges 10.2.5 Future Prospects 10.3 Development of Photocatalytic CO2 Reactors 10.3.1 Introduction 10.3.2 Foundations of CO2 Photoconversion 10.3.3 Future Prospects and Opportunities 10.4 Summary References Index