دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Amir Beck
سری:
ISBN (شابک) : 1611973643, 9781611973648
ناشر: SIAM-Society for Industrial and Applied Mathematics
سال نشر: 2014
تعداد صفحات: 294
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای در بهینه سازی غیرخطی: نظریه ، الگوریتم ها و برنامه ها با MATLAB نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes several subjects not typically found in optimization books-for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat-Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB toolbox CVX and a package of m-files that is posted on the book's web site.
Audience: This book is intended for graduate or advanced undergraduate students of mathematics, computer science, and electrical engineering as well as other engineering departments. The book will also be of interest to researchers.
Contents: Chapter 1: Mathematical Preliminaries; Chapter 2: Optimality Conditions for Unconstrained Optimization; Chapter 3: Least Squares; Chapter 4: The Gradient Method; Chapter 5: Newton s Method; Chapter 6: Convex Sets; Chapter 7: Convex Functions; Chapter 8: Convex Optimization; Chapter 9: Optimization Over a Convex Set; Chapter 10: Optimality Conditions for Linearly Constrained Problems; Chapter 11: The KKT Conditions; Chapter 12: Duality
Preface xi 1 Mathematical Preliminaries 1 1.1 The Space n 1 1.2 The Space m×n 2 1.3 Inner Products and Norms 2 1.4 Eigenvalues and Eigenvectors 5 1.5 Basic Topological Concepts 6 Exercises 10 2 Optimality Conditions for Unconstrained Optimization 13 2.1 Global and Local Optima 13 2.2 Classification of Matrices 17 2.3 Second Order Optimality Conditions 23 2.4 Global Optimality Conditions 30 2.5 Quadratic Functions 32 Exercises 34 3 Least Squares 37 3.1 “Solution” of Overdetermined Systems 37 3.2 Data Fitting 39 3.3 Regularized Least Squares 41 3.4 Denoising 42 3.5 Nonlinear Least Squares 45 3.6 Circle Fitting 45 Exercises 47 4 The Gradient Method 49 4.1 Descent Directions Methods 49 4.2 The Gradient Method 52 4.3 The Condition Number 58 4.4 Diagonal Scaling 63 4.5 The Gauss–Newton Method 67 4.6 The Fermat–Weber Problem 68 4.7 Convergence Analysis of the Gradient Method 73 Exercises 79 5 Newton’s Method 83 5.1 Pure Newton’s Method 83 5.2 Damped Newton’s Method 88 5.3 The Cholesky Factorization 90 Exercises 94 6 Convex Sets 97 6.1 Definition and Examples 97 6.2 Algebraic Operations with Convex Sets 100 6.3 The Convex Hull 101 6.4 Convex Cones 104 6.5 Topological Properties of Convex Sets 108 6.6 Extreme Points 111 Exercises 113 7 Convex Functions 117 7.1 Definition and Examples 117 7.2 First Order Characterizations of Convex Functions 119 7.3 Second Order Characterization of Convex Functions 123 7.4 Operations Preserving Convexity 125 7.5 Level Sets of Convex Functions 130 7.6 Continuity and Differentiability of Convex Functions 132 7.7 Extended Real-Valued Functions 135 7.8 Maxima of Convex Functions 137 7.9 Convexity and Inequalities 139 Exercises 141 8 Convex Optimization 147 8.1 Definition 147 8.2 Examples 149 8.3 The Orthogonal Projection Operator 156 8.4 CVX 158 Exercises 166 9 Optimization over a Convex Set 169 9.1 Stationarity 169 9.2 Stationarity in Convex Problems 173 9.3 The Orthogonal Projection Revisited 173 9.4 The Gradient Projection Method 175 9.5 Sparsity Constrained Problems 183 Exercises 189 10 Optimality Conditions for Linearly Constrained Problems 191 10.1 Separation and Alternative Theorems 191 10.2 The KKT conditions 195 10.3 Orthogonal Regression 203 Exercises 205 11 The KKT Conditions 207 11.1 Inequality Constrained Problems 207 11.2 Inequality and Equality Constrained Problems 210 11.3 The Convex Case 213 11.4 Constrained Least Squares 218 11.5 Second Order Optimality Conditions 222 11.6 Optimality Conditions for the Trust Region Subproblem 227 11.7 Total Least Squares 230 Exercises 233 12 Duality 237 12.1 Motivation and Definition 237 12.2 Strong Duality in the Convex Case 241 12.3 Examples 247 Exercises 270 Bibliographic Notes 275 Bibliography 277 Index 281