ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction To Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach (Wiley - IEEE)

دانلود کتاب مقدمه ای بر خطوط انتقال مسطح مدرن: رویکرد مدلهای فیزیکی ، تحلیلی و مداری (ویلی - IEEE)

Introduction To Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach (Wiley - IEEE)

مشخصات کتاب

Introduction To Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach (Wiley - IEEE)

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 1119632277, 9781119632276 
ناشر: Wiley-IEEE Press 
سال نشر: 2021 
تعداد صفحات: 944
[941] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 53 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Introduction To Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach (Wiley - IEEE) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر خطوط انتقال مسطح مدرن: رویکرد مدلهای فیزیکی ، تحلیلی و مداری (ویلی - IEEE) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر خطوط انتقال مسطح مدرن: رویکرد مدلهای فیزیکی ، تحلیلی و مداری (ویلی - IEEE)



Pبحث جامعی از خطوط انتقال مسطح و کاربردهای آنها با تمرکز بر درک فیزیکی، رویکرد تحلیلی و مدل‌های مدار ارائه می‌کند

انتقال مسطح خطوط هسته ارتباطات مدرن با فرکانس بالا، کامپیوتر و سایر فناوری های مرتبط را تشکیل می دهند. این متن پیشرفته یک نمای کلی از این فناوری ارائه می دهد و به عنوان یک ابزار جامع برای مهندسان فرکانس رادیویی (RF) عمل می کند که منعکس کننده یک بحث خطی از موضوع از اصول تا استدلال های پیچیده تر است.

مقدمه ای بر خطوط انتقال مسطح مدرن: رویکرد مدل‌های فیزیکی، تحلیلی و مداریبا بحث در مورد امواج در خطوط انتقال و امواج در محیط مادی آغاز می‌شود، که شامل تعداد زیادی نمونه‌های گویا از نتایج منتشر شده است. پس از توضیح خواص الکتریکی رسانه دی الکتریک، کتاب به جزئیات خطوط انتقال مختلف از جمله موجبر، خط میکرو نوار، موجبر همسطح، خط نوار، خط شکاف و خطوط انتقال جفت شده می‌پردازد. تعدادی از موضوعات خاص و پیشرفته در فصول بعدی مورد بحث قرار می گیرد، مانند ساخت خطوط انتقال مسطح، روش های تغییر استاتیکی برای خطوط انتقال مسطح، خطوط انتقال مسطح چند لایه، تجزیه و تحلیل دامنه طیفی، تشدید کننده ها، خطوط و سطوح تناوبی، و تحقق فراماده و مدار. مدل‌ها.

  • بر مدل‌سازی با استفاده از مفاهیم فیزیکی، مدل‌های مدار، عبارات شکل بسته، و مشتق کامل تعداد زیادی از عبارات تاکید می‌کند
  • درمان ریاضی پیشرفته را توضیح می‌دهد، مانند روش تنوع، روش نگاشت هماهنگ و SDA
  • هر بخش از متن را با ارجاع متقابل رو به جلو و عقب وصل می کند تا به خودآموزی شخصی کمک کند
مقدمه خطوط انتقال مسطح مدرنکتابی ایده آل برای دانشجویان ارشد این رشته در مقطع کارشناسی و کارشناسی ارشد است. همچنین برای محققان جدید با پیشینه بین رشته ای و همچنین برای مهندسان و متخصصان صنایعی که از فناوری های RF/مایکروویو استفاده می کنند جذاب خواهد بود.

توضیحاتی درمورد کتاب به خارجی

Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models

Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments.

Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models.

  • Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions
  • Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA
  • Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study
Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.


فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Chapter 1 Overview of Transmission Lines: (Historical Perspective, Overview of Present Book)
	Introduction
	1.1 Overview of the Classical Transmission Lines
		1.1.1 Telegraph Line
		1.1.2 Development of Theoretical Concepts in EM-Theory
		1.1.3 Development of the Transmission Line Equations
		1.1.4 Waveguides as Propagation Medium
	1.2 Planar Transmission Lines
		1.2.1 Development of Planar Transmission Lines
		1.2.2 Analytical Methods Applied to Planar Transmission Lines
	1.3 Overview of Present Book
		1.3.1 The Organization of Chapters in This Book
		1.3.2 Key Features, Intended Audience, and Some Suggestions
	References
Chapter 2 Waves on Transmission Lines – I: (Basic Equations, Multisection Transmission Lines)
	Introduction
	2.1 Uniform Transmission Lines
		2.1.1 Wave Motion
		2.1.2 Circuit Model of Transmission Line
		2.1.3 Kelvin–Heaviside Transmission Line Equations in Time Domain
		2.1.4 Kelvin–Heaviside Transmission Line Equations in Frequency-Domain
		2.1.5 Characteristic of Lossy Transmission Line
		2.1.6 Wave Equation with Source
		2.1.7 Solution of Voltage and Current-Wave Equation
		2.1.8 Application of Thevenin's Theorem to Transmission Line
		2.1.9 Power Relation on Transmission Line
	2.2 Multisection Transmission Lines and Source Excitation
		2.2.1 Multisection Transmission Lines
		2.2.2 Location of Sources
	2.3 Nonuniform Transmission Lines
		2.3.1 Wave Equation for Nonuniform Transmission Line
		2.3.2 Lossless Exponential Transmission Line
	References
Chapter 3 Waves on Transmission Lines – II: (Network Parameters, Wave Velocities, Loaded Lines)
	Introduction
	3.1 Matrix Description of Microwave Network
		3.1.1 [Z] Parameters
		3.1.2 Admittance Matrix
		3.1.3 Transmission [ABCD] Parameter
		3.1.4 Scattering [S] Parameters
	3.2 Conversion and Extraction of Parameters
		3.2.1 Relation Between Matrix Parameters
		3.2.2 De-Embedding of True S-Parameters
		3.2.3 Extraction of Propagation Characteristics
	3.3 Wave Velocity on Transmission Line
		3.3.1 Phase Velocity
		3.3.2 Group Velocity
	3.4 Linear Dispersive Transmission Lines
		3.4.1 Wave Equation of Dispersive Transmission Lines
		3.4.2 Circuit Models of Dispersive Transmission Lines
	References
Chapter 4 Waves in Material Medium – I: (Waves in Isotropic and Anisotropic Media, Polarization of Waves)
	Introduction
	4.1 Basic Electrical Quantities and Parameters
		4.1.1 Flux Field and Force Field
		4.1.2 Constitutive Relations
		4.1.3 Category of Materials
	4.2 Electrical Property of Medium
		4.2.1 Linear and Nonlinear Medium
		4.2.2 Homogeneous and Nonhomogeneous Medium
		4.2.3 Isotropic and Anisotropic Medium
		4.2.4 Nondispersive and Dispersive Medium
		4.2.5 Non-lossy and Lossy Medium
		4.2.6 Static Conductivity of Materials
	4.3 Circuit Model of Medium
		4.3.1 RC Circuit Model of Lossy Dielectric Medium
		4.3.2 Circuit Model of Lossy Magnetic Medium
	4.4 Maxwell Equations and Power Relation
		4.4.1 Maxwell´s Equations
		4.4.2 Power and Energy Relation from Maxwell Equations
	4.5 EM-waves in Unbounded Isotropic Medium
		4.5.1 EM-wave Equation
		4.5.2 1D Wave Equation
		4.5.3 Uniform Plane Waves in Linear Lossless Homogeneous Isotropic Medium
		4.5.4 Vector Algebraic Form of Maxwell Equations
		4.5.5 Uniform Plane Waves in Lossy Conducting Medium
	4.6 Polarization of EM-waves
		4.6.1 Linear Polarization
		4.6.2 Circular Polarization
		4.6.3 Elliptical Polarization
		4.6.4 Jones Matrix Description of Polarization States
	4.7 EM-waves Propagation in Unbounded Anisotropic Medium
		4.7.1 Wave Propagation in Uniaxial Medium
		4.7.2 Wave Propagation in Uniaxial Gyroelectric Medium
		4.7.3 Dispersion Relations in Biaxial Medium
		4.7.4 Concept of Isofrequency Contours and Isofrequency Surfaces
		4.7.5 Dispersion Relations in Uniaxial Medium
	References
Chapter 5 Waves in Material Medium-II: (Reflection & Transmission of Waves, Introduction to Metamaterials)
	Introduction
	5.1 EM-Waves at Interface of Two Different Media
		5.1.1 Normal Incidence of Plane Waves
		5.1.2 The Interface of a Dielectric and Perfect Conductor
		5.1.3 Transmission Line Model of the Composite Medium
	5.2 Oblique Incidence of Plane Waves
		5.2.1 TE (Perpendicular) Polarization Case
		5.2.2 TM (Parallel) Polarization Case
		5.2.3 Dispersion Diagrams of Refracted Waves in Isotropic and Uniaxial Anisotropic Media
		5.2.4 Wave Impedance and Equivalent Transmission Line Model
	5.3 Special Cases of Angle of Incidence
		5.3.1 Brewster Angle
		5.3.2 Critical Angle
	5.4 EM-Waves Incident at Dielectric Slab
		5.4.1 Oblique Incidence
		5.4.2 Normal Incidence
	5.5 EM-Waves in Metamaterials Medium
		5.5.1 General Introduction of Metamaterials and Their Classifications
		5.5.2 EM-Waves in DNG Medium
		5.5.3 Basic Transmission Line Model of the DNG Medium
		5.5.4 Lossy DPS and DNG Media
		5.5.5 Wave Propagation in DNG Slab
		5.5.6 DNG Flat Lens and Superlens
		5.5.7 Doppler and Cerenkov Radiation in DNG Medium
		5.5.8 Metamaterial Perfect Absorber (MPA)
	References
Chapter 6 Electrical Properties of Dielectric Medium
	Introduction
	6.1 Modeling of Dielectric-Medium
		6.1.1 Dielectric Polarization
		6.1.2 Susceptibility, Relative Permittivity, and Clausius–Mossotti Model
		6.1.3 Models of Polarizability
		6.1.4 Magnetization of Materials
	6.2 Static Dielectric Constants of Materials
		6.2.1 Natural Dielectric Materials
		6.2.2 Artificial Dielectric Materials
	6.3 Dielectric Mixtures
		6.3.1 General Description of Dielectric Mixture Medium
		6.3.2 Limiting Values of Equivalent Relative Permittivity
		6.3.3 Additional Equivalent Permittivity Models of Mixture
	6.4 Frequency Response of Dielectric Materials
		6.4.1 Relaxation in Material and Decay Law
		6.4.2 Polarization Law of Linear Dielectric-Medium
		6.4.3 Debye Dispersion Relation
	6.5 Resonance Response of the Dielectric-Medium
		6.5.1 Lorentz Oscillator Model
		6.5.2 Drude Model of Conductor and Plasma
		6.5.3 Dispersion Models of Dielectric Mixture Medium
		6.5.4 Kramers–Kronig Relation
	6.6 Interfacial Polarization
		6.6.1 Interfacial Polarization in Two-Layered Capacitor Medium
	6.7 Circuit Models of Dielectric Materials
		6.7.1 Series RC Circuit Model
		6.7.2 Parallel RC Circuit Model
		6.7.3 Parallel Series Combined Circuit Model
		6.7.4 Series Combination of RC Parallel Circuit
		6.7.5 Series RLC Resonant Circuit Model
	6.8 Substrate Materials for Microwave Planar Technology
		6.8.1 Evaluation of Parameters of Single-Term Debye and Lorentz Models
		6.8.2 Multiterm and Wideband Debye Models
		6.8.3 Metasubstrates
	References
Chapter 7 Waves in Waveguide Medium
	Introduction
	7.1 Classification of EM-Fields
		7.1.1 Maxwell Equations and Vector Potentials
		7.1.2 Magnetic Vector Potential
		7.1.3 Electric Vector Potential
		7.1.4 Generation of EM-Field by Electric and Magnetic Vector Potentials
	7.2 Boundary Surface and Boundary Conditions
		7.2.1 Perfect Electric Conductor (PEC)
		7.2.2 Perfect Magnetic Conductor (PMC)
		7.2.3 Interface of Two Media
	7.3 TEM-Mode Parallel-Plate Waveguide
		7.3.1 TEM Field in Parallel-Plate Waveguide
		7.3.2 Circuit Relations
		7.3.3 Kelvin–Heaviside Transmission Line Equations from Maxwell Equations
	7.4 Rectangular Waveguides
		7.4.1 Rectangular Waveguide with Four EWs
		7.4.2 Rectangular Waveguide with Four MWs
		7.4.3 Rectangular Waveguide with Composite Electric and MWs
	7.5 Conductor Backed Dielectric Sheet Surface Wave Waveguide
		7.5.1 TMz Surface Wave Mode
		7.5.2 TEz Surface Wave Mode
	7.6 Equivalent Circuit Model of Waveguide
		7.6.1 Relation Between Wave Impedance and Characteristic Impedance
		7.6.2 Transmission Line Model of Waveguide
	7.7 Transverse Resonance Method (TRM)
		7.7.1 Standard Rectangular Waveguide
		7.7.2 Dielectric Loaded Waveguide
		7.7.3 Slab Waveguide
		7.7.4 Conductor Backed Multilayer Dielectric Sheet
	7.8 Substrate Integrated Waveguide (SIW)
		7.8.1 Complete Mode Substrate Integrated Waveguide (SIW)
		7.8.2 Half-Mode Substrate Integrated Waveguide (SIW)
	References
Chapter 8 Microstrip Line: Basic Characteristics
	Introduction
	8.1 General Description
		8.1.1 Conceptual Evolution of Microstrip Lines
		8.1.2 Non-TEM Nature of Microstrip Line
		8.1.3 Quasi-TEM Mode of Microstrip Line
		8.1.4 Basic Parameters of Microstrip Line
	8.2 Static Closed-Form Models of Microstrip Line
		8.2.1 Homogeneous Medium Model of Microstrip Line (Wheeler’s Transformation)
		8.2.2 Static Characteristic Impedance of Microstrip Line
		8.2.3 Results on Static Parameters of Microstrip Line
		8.2.4 Effect of Conductor Thickness on Static Parameters of Microstrip Line
		8.2.5 Effect of Shield on Static Parameters of Microstrip Line
		8.2.6 Microstrip Line on Anisotropic Substrate
	8.3 Dispersion in Microstrip Line
		8.3.1 Nature of Dispersion in Microstrip
		8.3.2 Waveguide Model of Microstrip
		8.3.3 Logistic Dispersion Model of Microstrip (Dispersion Law of Microstrip)
		8.3.4 Kirschning–Jansen Dispersion Model
		8.3.5 Improved Model of Frequency-Dependent Characteristic Impedance
		8.3.6 Synthesis of Microstrip Line
	8.4 Losses in Microstrip Line
		8.4.1 Dielectric Loss in Microstrip
		8.4.2 Conductor Loss in Microstrip
	8.5 Circuit Model of Lossy Microstrip Line
	References
Chapter 9 Coplanar Waveguide and Coplanar Stripline: Basic Characteristics
	Introduction
	9.1 General Description
	9.2 Fundamentals of Conformal Mapping Method
		9.2.1 Complex Variable
		9.2.2 Analytic Function
		9.2.3 Properties of Conformal Transformation
		9.2.4 Schwarz–Christoffel (SC) Transformation
		9.2.5 Elliptic Sine Function
	9.3 Conformal Mapping Analysis of Coplanar Waveguide
		9.3.1 Infinite Extent CPW
		9.3.2 CPW on Finite Thickness Substrate and Infinite Ground Plane
		9.3.3 CPW with Finite Ground Planes
		9.3.4 Static Characteristics of CPW
		9.3.5 Top-Shielded CPW
		9.3.6 Conductor-Backed CPW
	9.4 Coplanar Stripline
		9.4.1 Symmetrical CPS on Infinitely Thick Substrate
		9.4.2 Asymmetrical CPS (ACPS) on Infinitely Thick Substrate
		9.4.3 Symmetrical CPS on Finite Thickness Substrate
		9.4.4 Asymmetrical CPW (ACPW) and Asymmetrical CPS (ACPS) on Finite Thickness Substrate
		9.4.5 Asymmetric CPS Line with Infinitely Wide Ground Plane
		9.4.6 CPS with Coplanar Ground Plane [CPS–CGP]
		9.4.7 Discussion on Results for CPS
	9.5 Effect of Conductor Thickness on Characteristics of CPW and CPS Structures
		9.5.1 CPW Structure
		9.5.2 CPS Structure
	9.6 Modal Field and Dispersion of CPW and CPS Structures
		9.6.1 Modal Field Structure of CPW
		9.6.2 Modal Field Structure of CPS
		9.6.3 Closed-Form Dispersion Model of CPW
		9.6.4 Dispersion in CPS Line
	9.7 Losses in CPW and CPS Structures
		9.7.1 Conductor Loss
		9.7.2 Dielectric Loss
		9.7.3 Substrate Radiation Loss
	9.8 Circuit Models and Synthesis of CPW and CPS
		9.8.1 Circuit Model
		9.8.2 Synthesis of CPW
		9.8.3 Synthesis of CPS
	References
Chapter 10 Slot Line: Slot Line: Basic Characteristics
	Introduction
	10.1 Slot Line Structures
		10.1.1 Structures of the Open Slot Line
		10.1.2 Shielded Slot Line Structures
	10.2 Analysis and Modeling of Slot Line
		10.2.1 Magnetic Current Model
	10.3 Waveguide Model
		10.3.1 Standard Slot Line
		10.3.2 Sandwich Slot Line
		10.3.3 Shielded Slot Line
		10.3.4 Characteristics of Slot Line
	10.4 Closed-form Models
		10.4.1 Conformal Mapping Method
		10.4.2 Krowne Model
		10.4.3 Integrated Model
	References
Chapter 11 Coupled Transmission Lines: Basic Characteristics
	Introduction
	11.1 Some Coupled Line Structures
	11.2 Basic Concepts of Coupled Transmission Lines
		11.2.1 Forward and Reverse Directional Coupling
		11.2.2 Basic Definitions
	11.3 Circuit Models of Coupling
		11.3.1 Capacitive Coupling – Even and Odd Mode Basics
		11.3.2 Forms of Capacitive Coupling
		11.3.3 Forms of Inductive Coupling
	11.4 Even–Odd Mode Analysis of Symmetrical Coupled Lines
		11.4.1 Analysis Method
		11.4.2 Coupling Coefficients
	11.5 Wave Equation for Coupled Transmission Lines
		11.5.1 Kelvin–Heaviside Coupled Transmission Line Equations
		11.5.2 Solution of Coupled Wave Equation
		11.5.3 Modal Characteristic Impedance and Admittance
	References
Chapter 12 Planar Coupled Transmission Lines
	Introduction
	12.1 Line Parameters of Symmetric Edge Coupled Microstrips
		12.1.1 Static Models for Even- and Odd-Mode Relative Permittivity and Characteristic Impedances of Edge Coupled Microstrips
		12.1.2 Frequency-Dependent Models of Edge Coupled Microstrip Lines
	12.2 Line Parameters of Asymmetric Coupled Microstrips
		12.2.1 Static Parameters of Asymmetrically Coupled Microstrips
		12.2.2 Frequency-Dependent Line Parameters of Asymmetrically Coupled Microstrips
	12.3 Line Parameters of Coupled CPW
		12.3.1 Symmetric Edge Coupled CPW
		12.3.2 Shielded Broadside Coupled CPW
	12.4 Network Parameters of Coupled Line Section
		12.4.1 Symmetrical Coupled Line in Homogeneous Medium
		12.4.2 Symmetrical Coupled Microstrip Line in An Inhomogeneous Medium
		12.4.3 ABCD Matrix of Symmetrical Coupled Transmission Lines
	12.5 Asymmetrical Coupled Lines Network Parameters
		12.5.1 [ABCD] Parameters of the 4-Port Network
	References
Chapter 13 Fabrication of Planar Transmission Lines
	Introduction
	13.1 Elements of Hybrid MIC (HMIC) Technology
		13.1.1 Substrates
		13.1.2 Hybrid MIC Fabrication Process
		13.1.3 Thin-Film Process
		13.1.4 Thick-Film Process
	13.2 Elements of Monolithic MIC (MMIC) Technology
		13.2.1 Fabrication Process
		13.2.2 Planar Transmission Lines in MMIC
	13.3 Micromachined Transmission Line Technology
		13.3.1 MEMS Fabrication Process
		13.3.2 MEMS Transmission Line Structures
	13.4 Elements of LTCC
		13.4.1 LTCC Materials and Process
		13.4.2 LTCC Circuit Fabrication
		13.4.3 LTCC Planar Transmission Line and Some Components
		13.4.4 LTCC Waveguide and Cavity Resonators
	References
Chapter 14 Static Variational Methods for Planar Transmission Lines
	Introduction
	14.1 Variational Formulation of Transmission Line
		14.1.1 Basic Concepts of Variation
		14.1.2 Energy Method-Based Variational Expression
		14.1.3 Green's Function Method-Based Variational Expression
	14.2 Variational Expression of Line Capacitance in Fourier Domain
		14.2.1 Transformation of Poisson Equation in Fourier Domain
		14.2.2 Transformation of Variational Expression of Line Capacitance in Fourier Domain
		14.2.3 Fourier Transform of Some Charge Distribution Functions
	14.3 Analysis of Microstrip Line by Variational Method
		14.3.1 Boxed Microstrip Line (Green's Function Method in Space Domain)
		14.3.2 Open Microstrip Line (Green's Function Method in Fourier Domain)
		14.3.3 Open Microstrip Line (Energy Method in Fourier Domain)
	14.4 Analysis of Multilayer Microstrip Line
		14.4.1 Space Domain Analysis of Multilayer Microstrip Structure
		14.4.2 Static Spectral Domain Analysis of Multilayer Microstrip
	14.5 Analysis of Coupled Microstrip Line in Multilayer Dielectric Medium
		14.5.1 Space Domain Analysis
		14.5.2 Spectral Domain Analysis
	14.6 Discrete Fourier Transform Method
		14.6.1 Discrete Fourier Transform
		14.6.2 Boxed Microstrip Line
		14.6.3 Boxed Coplanar Waveguide
	References
Chapter 15 Multilayer Planar Transmission Lines: SLR Formulation
	Introduction
	15.1 SLR Process for Multilayer Microstrip Lines
		15.1.1 SLR-Process for Lossy Multilayer Microstrip Lines
		15.1.2 Dispersion Model of Multilayer Microstrip Lines
		15.1.3 Characteristic Impedance and Synthesis of Multilayer Microstrip Lines
		15.1.4 Models of Losses in Multilayer Microstrip Lines
		15.1.5 Circuit Model of Multilayer Microstrip Lines
	15.2 SLR Process for Multilayer Coupled Microstrip Lines
		15.2.1 Equivalent Single-Layer Substrate
		15.2.2 Dispersion Model of Multilayer Coupled Microstrip Lines
		15.2.3 Characteristic Impedance and Synthesis of Multilayer Coupled Microstrips
		15.2.4 Loss Models of Multilayer Coupled Microstrip Lines
	15.3 SLR Process for Multilayer ACPW/CPW
		15.3.1 Single-Layer Reduction (SLR) Process for Multilayer ACPW/CPW
		15.3.2 Static SDA of Multilayer ACPW/CPW Using Two-Conductor Model
		15.3.3 Dispersion Models of Multilayer ACPW/CPW
		15.3.4 Loss Models of Multilayer ACPW/CPW
	15.4 Further Consideration of SLR Formulation
	References
Chapter 16 Dynamic Spectral Domain Analysis
	Introduction
	16.1 General Discussion of SDA
	16.2 Green's Function of Single-Layer Planar Line
		16.2.1 Formulation of Field Problem
		16.2.2 Case #1: CPW and Microstrip Structures
		16.2.3 Case #II – Sides: MW – EW, Bottom: MW, Top: EW
	16.3 Solution of Hybrid Mode Field Equations (Galerkin's Method in Fourier Domain)
		16.3.1 Microstrip
		16.3.2 CPW Structure
	16.4 Basis Functions for Surface Current Density and Slot Field
		16.4.1 Nature of the Field and Current Densities
		16.4.2 Basis Functions and Nature of Hybrid Modes
	16.5 Coplanar Multistrip Structure
		16.5.1 Symmetrical Coupled Microstrip Line
	16.6 Multilayer Planar Transmission Lines
		16.6.1 Immittance Approach for Single-Level Strip Conductors
		16.6.2 Immittance Approach for Multilevel Strip Conductors
	References
Chapter 17 Lumped and Line Resonators: Basic Characteristics
	Introduction
	17.1 Basic Resonating Structures
	17.2 Zero-Dimensional Lumped Resonator
		17.2.1 Lumped Series Resonant Circuit
		17.2.2 Lumped Parallel Resonant Circuit
		17.2.3 Resonator with External Circuit
		17.2.4 One-Port Reflection-Type Resonator
		17.2.5 Two-Port Transmission-Type Resonator
		17.2.6 Two-Port Reaction-Type Resonator
	17.3 Transmission Line Resonator
		17.3.1 Lumped Resonator Modeling of Transmission Line Resonator
		17.3.2 Modal Description of λg/2 Short-Circuited Line Resonator
	References
Chapter 18 Planar Resonating Structures
	Introduction
	18.1 Microstrip Line Resonator
		18.1.1 λg/2 Open-end Microstrip Resonator
		18.1.2 λg/2 and λg/4 Short-circuited Ends Microstrip Resonator
		18.1.3 Microstrip Ring Resonator
		18.1.4 Microstrip Step Impedance Resonator
		18.1.5 Microstrip Hairpin Resonator
	18.2 CPW Resonator
	18.3 Slot Line Resonator
	18.4 Coupling of Line Resonator to Source and Load
		18.4.1 Direct-coupled Resonator
		18.4.2 Reactively Coupled Line Resonator
		18.4.3 Tapped Line Resonator
		18.4.4 Feed to Planar Transmission Line Resonator
	18.5 Coupled Resonators
		18.5.1 Coupled Microstrip Line Resonator
		18.5.2 Circuit Model of Coupled Microstrip Line Resonator
		18.5.3 Some Structures of Coupled Microstrip Line Resonator
	18.6 Microstrip Patch Resonators
		18.6.1 Rectangular Patch
		18.6.2 Modified Wolff Model (MWM)
		18.6.3 Circular Patch
		18.6.4 Ring Patch
		18.6.5 Equilateral Triangular Patch
	18.7 2D Fractal Resonators
		18.7.1 Fractal Geometry
		18.7.2 Fractal Resonator Antenna
		18.7.3 Fractal Resonators
	18.8 Dual-Mode Resonators
		18.8.1 Dual-Mode Patch Resonators
		18.8.2 Dual-Mode Ring Resonators
	References
Chapter 19 Planar Periodic Transmission Lines
	Introduction
	19.1 1D and 2D Lattice Structures
		19.1.1 Bragg's Law of Diffraction
		19.1.2 Crystal Lattice Structures
		19.1.3 Concept of Brillouin Zone
	19.2 Space Harmonics of Periodic Structures
		19.2.1 Floquet–Bloch Theorem and Space Harmonics
	19.3 Circuit Models of 1D Periodic Transmission Line
		19.3.1 Periodically Loaded Artificial Lines
		19.3.2 [ABCD] Parameters of Unit Cell
		19.3.3 Dispersion in Periodic Lines
		19.3.4 Characteristics of 1D Periodic Lines
		19.3.5 Some Loading Elements of 1D Periodic Lines
		19.3.6 Realization of Planar Loading Elements
	19.4 1D Planar EBG Structures
		19.4.1 1D Microstrip EBG Line
		19.4.2 1D CPW EBG Line
	References
Chapter 20 Planar Periodic Surfaces
	Introduction
	20.1 2D Planar EBG Surfaces
		20.1.1 General Introduction of EBG Surfaces
		20.1.2 Characteristics of EBG Surface
		20.1.3 Horizontal Wire Dipole Near EBG Surface
	20.2 Circuit Models of Mushroom-Type EBG
		20.2.1 Basic Circuit Model
		20.2.2 Dynamic Circuit Model
	20.3 Uniplanar EBG Structures
	20.4 2D Circuit Models of EBG Structures
		20.4.1 Shunt-Connected 2D Planar EBG Circuit Model
		20.4.2 Series-Connected 2D Planar EBG Circuit Model
	References
Chapter 21 Metamaterials Realization and Circuit Models – I: (Basic Structural Elements and Bulk Metamaterials)
	Introduction
	21.1 Artificial Electric Medium
		21.1.1 Polarization in the Wire Medium
		21.1.2 Equivalent Parallel Plate Waveguide Model of Wire Medium
		21.1.3 Reactance Loaded Wire Medium
	21.2 Artificial Magnetic Medium
		21.2.1 Characteristics of the SRR
		21.2.2 Circuit Model of the SRR
		21.2.3 Computation of Equivalent Circuit Parameters of SRR
		21.2.4 Bi-anisotropy in the SRR Medium
		21.2.5 Variations in SRR Structure
	21.3 Double Negative Metamaterials
		21.3.1 Composite Permittivity–Permeability Functions
		21.3.2 Realization of Composite DNG Metamaterials
		21.3.3 Realization of Single-Structure DNG Metamaterials
	21.4 Homogenization and Parameters Extraction
		21.4.1 Nicolson–Ross–Weir (NRW) Method
		21.4.2 Dynamic Maxwell Garnett Model
	References
Chapter 22 Metamaterials Realization and Circuit Models – II: (Metalines and Metasurfaces)
	Introduction
	22.1 Circuit Models of 1D-Metamaterials
		22.1.1 Homogenization of the 1D-medium
		22.1.2 Circuit Equivalence of Material Medium
		22.1.3 Single Reactive Loading of Host Medium
		22.1.4 Single Reactive Loading of Host Medium with Coupling
		22.1.5 Circuit Models of 1D Metalines
	22.2 Nonresonant Microstrip Metalines
		22.2.1 Series–Parallel (CRLH) Metalines
		22.2.2 Cascaded MNG–ENG (CRLH) Metalines
		22.2.3 Parallel–Series (D-CRLH) Metalines
	22.3 Resonant Metalines
		22.3.1 Resonant Inclusions
		22.3.2 Microstrip Resonant Metalines
		22.3.3 CPW-Resonant Metalines
	22.4 Some Applications of Metalines
		22.4.1 Backfire to Endfire Leaky Wave Antenna
		22.4.2 Metaline-Based Microstrip Directional Coupler
		22.4.3 Multiband Metaline-Based Components
	22.5 Modeling and Characterization of Metsurfaces
		22.5.1 Characterization of Metasurface
		22.5.2 Reflection and Transmission Coefficients of Isotropic Metasurfaces
		22.5.3 Phase Control of Metasurface
		22.5.4 Generalized Snell's Laws of Metasurfaces
		22.5.5 Surface Waves on Metasurface
	22.6 Applications of Metasurfaces
		22.6.1 Demonstration of Anomalous Reflection and Refraction of Metasurfaces
		22.6.2 Reflectionless Transmission of Metasurfaces
		22.6.3 Polarization Conversion of Incident Plane Wave
	References
Index
EULA




نظرات کاربران