دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Claudio Cobelli. Ewart Carson
سری:
ISBN (شابک) : 0128157569, 9780128157565
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 372
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Introduction to Modeling in Physiology and Medicine به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر مدل سازی در فیزیولوژی و پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمهای بر مدلسازی در فیزیولوژی و پزشکی، ویرایش دوم، درک روشنی از اصول اساسی روششناسی مدلسازی خوب ایجاد میکند. بخشها نشان میدهند که چگونه میتوان مدلهای ریاضی معتبر ایجاد کرد که برای طیف وسیعی از اهداف مناسب هستند. این مدل ها با توضیحات مفصل، مطالعات موردی گسترده، مثال ها و کاربردها پشتیبانی می شوند. این نسخه به روز شده شامل راهنمایی واضح تر در مورد پیش نیازهای ریاضی مورد نیاز برای دستیابی به حداکثر سود از مطالب، جزئیات بیشتر در مورد رویکردهای اساسی مدل سازی، و بحث در مورد مدل سازی غیر خطی و تصادفی است. گستره مطالب مطالعه موردی به طور قابل توجهی گسترش یافته است، با مثال هایی که از تجربه تحقیقات اخیر استخراج شده است.
نمونههای کلیدی شامل مدل سلولی ترشح انسولین و گسترش آن به سطح کل بدن، مدلی از عملکرد انسولین در طول آزمایش تحمل گلوکز خوراکی/غذایی، مدل شبیهسازی در مقیاس بزرگ دیابت نوع 1 است. و استفاده از آن در در سیلیکون آزمایشات بالینی و آزمایشات دارویی.
Introduction to Modeling in Physiology and Medicine, Second Edition, develops a clear understanding of the fundamental principles of good modeling methodology. Sections show how to create valid mathematical models that are fit for a range of purposes. These models are supported by detailed explanation, extensive case studies, examples and applications. This updated edition includes clearer guidance on the mathematical prerequisites needed to achieve the maximum benefit from the material, a greater detail regarding basic approaches to modeling, and discussions on non-linear and stochastic modeling. The range of case study material has been substantially extended, with examples drawn from recent research experience.
Key examples include a cellular model of insulin secretion and its extension to the whole-body level, a model of insulin action during a meal/oral glucose tolerance test, a large-scale simulation model of type 1 diabetes and its use in in silico clinical trials and drug trials.
Cover Introduction to Modeling in Physiology and Medicine Copyright Preface to the second edition Preface to the first edition 1 Introduction 1.1 Introduction 1.2 The book in context 1.3 The major ingredients 1.4 Readership and prerequisites 1.5 Organization of the book 2 Physiological complexity and the need for models 2.1 Introduction 2.2 Complexity 2.3 System dynamics 2.3.1 First-order linear time-invariant systems 2.3.2 The dynamic behavior of first-order linear time-invariant systems—solution by integration 2.3.3 The classical solution for a first-order system 2.3.4 General case of a first-order linear system 2.4 Feedback 2.4.1 Negative feedback 2.4.2 Positive feedback 2.4.3 Inherent feedback 2.4.4 Combining negative and positive feedback 2.4.5 Derivative and integral feedback 2.4.6 Effects of feedback on the complexity of system dynamics 2.5 Control in physiological systems 2.5.1 General features 2.5.2 Enzymes 2.5.3 Hormones 2.6 Hierarchy 2.7 Redundancy 2.8 Function and behavior and their measurement 2.9 Challenges to understanding 2.10 Exercises and assignment questions 3 Models and the modeling process 3.1 Introduction 3.2 What is a model? 3.3 Why model? The purpose of modeling 3.4 How do we model? The modeling process 3.5 Model formulation 3.6 Model identification 3.7 Model validation 3.8 Model simulation 3.9 Summary 3.10 Exercises and assignment questions 4 Modeling the data 4.1 Introduction 4.2 The basis of data modeling 4.3 The why and when of data models 4.4 Approaches to data modeling 4.5 Modeling a single variable occurring spontaneously 4.5.1 Temperature 4.5.2 Urine potassium 4.5.3 Gastrointestinal rhythms 4.5.4 Hormonal time series 4.6 Modeling a single variable in response to a perturbation 4.6.1 Glucose home monitoring data 4.6.2 Response to drug therapy—prediction of bronchodilator response 4.7 Two variables causally related 4.7.1 Hormone/hormone and substrate/hormone series 4.7.2 Urine sodium response to water loading 4.8 Input/output modeling for control 4.8.1 Pupil control 4.8.2 Control of blood glucose by insulin 4.8.3 Control of blood pressure by sodium nitroprusside 4.9 Input/output modeling: impulse response and deconvolution 4.9.1 Impulse response estimation 4.9.2 The convolution integral 4.9.3 Reconstructing the input 4.10 Summary 4.11 Exercises and assignment questions 5 Modeling the system 5.1 Introduction 5.2 Static models 5.3 Linear modeling 5.3.1 The Windkessel circulatory model 5.3.2 Elimination from a single compartment 5.3.3 Gas exchange 5.3.4 The dynamics of a swinging limb 5.3.5 A model of glucose regulation 5.4 Distributed modeling 5.4.1 Blood–tissue exchange 5.4.1.1 The single-capillary model 5.4.1.2 The capillary–interstitial fluid model 5.4.1.3 The capillary–interstitial fluid-cell model 5.4.1.4 The whole-organ model 5.4.2 Hepatic removal of materials 5.4.3 Renal medulla 5.4.3.1 Model assumptions 5.4.3.2 Principles of the mathematical formulation for the tubular structures 5.4.3.3 Interstitial compartment 5.4.3.4 Transmural flux 5.5 Nonlinear modeling 5.5.1 The action potential model 5.5.1.1 An electrical model of the cell membrane 5.5.1.2 The Hodgkin–Huxley model 5.5.1.3 Potassium conductance 5.5.1.4 Sodium conductance 5.5.2 Enzyme dynamics 5.5.3 Baroreceptors 5.5.4 Central nervous control of heart rate 5.5.5 Compartmental modeling 5.5.5.1 The model 5.5.6 Insulin receptor regulation 5.5.7 Insulin action modeling 5.5.8 Thyroid hormone regulation 5.5.9 Modeling the chemical control of breathing 5.5.9.1 The controlled system Inspiration Expiration 5.5.9.2 The controller Inspiratory flow controller Inspiratory time controller Expiratory time controller 5.6 Time-varying modeling 5.6.1 An example in cardiac modeling 5.7 Stochastic modeling 5.7.1 Cellular modeling 5.7.1.1 The conceptual model 5.7.1.2 The mathematical model 5.7.2 Insulin secretion 5.7.3 Markov model 5.8 Summary 5.9 Exercises and assignment questions 6 Model identification 6.1 Introduction 6.2 Data for identification 6.2.1 Selection of test signals 6.2.2 Transient test signals 6.2.3 Harmonic test signals 6.2.4 Random signal testing 6.3 Errors 6.4 The way forward 6.4.1 Parameter estimation 6.4.2 Signal estimation 6.5 Summary 6.6 Exercises and assignment questions 7 Parametric modeling—the identifiability problem 7.1 Introduction 7.2 Some examples 7.3 Definitions 7.4 Linear models: the transfer function method 7.5 Nonlinear models: the Taylor series expansion method 7.6 Qualitative experimental design 7.6.1 Fundamentals 7.6.2 An amino acid model Stage A Stage B Stage B is not necessary Dual input/four output experiment Two input/three output experiment 7.7 Summary 7.8 Exercises and assignment questions 8 Parametric models—the estimation problem 8.1 Introduction 8.2 Linear and nonlinear parameters 8.3 Regression: basic concepts 8.3.1 The residual 8.3.2 The residual sum of squares 8.3.3 The weighted residual sum of squares 8.3.4 Weights and error in the data 8.4 Linear regression 8.4.1 The problem 8.4.2 Test on residuals 8.4.3 An Example 8.4.4 Extension to the vector case 8.5 Nonlinear regression 8.5.1 The scalar case 8.5.2 Extension to the vector case 8.5.3 Algorithms 8.5.4 An example 8.6 Tests for model order 8.7 Maximum likelihood estimation 8.8 Bayesian estimation 8.9 Optimal experimental design 8.10 Summary 8.11 Exercises and assignment questions 9 Nonparametric models—signal estimation 9.1 Introduction 9.2 Why is deconvolution important? 9.3 The problem 9.4 Difficulty of the deconvolution problem 9.5 The regularization method 9.5.1 Fundamentals 9.5.2 Choice of the regularization parameter 9.5.3 The virtual grid 9.6 Summary 9.7 Exercises and assignment questions 10 Model validation 10.1 Introduction 10.2 Model validation and the domain of validity 10.2.1 Validation during model formulation 10.2.2 Validation of the completed model Empirical Theoretical Pragmatic Heuristic 10.3 Validation strategies 10.3.1 Validation of a single model—basic approach Overall patterns of response Features of response 10.3.2 Validation of a single model—additional quantitative tools for numerically identified models Parameter precision Residuals of the mismatch between model and data Parameter plausibility 10.3.3 Validation of competing models Goodness of fit Features of response Model plausibility 10.4 Good practice in good modeling 10.5 Summary 10.6 Exercises and assignment questions 11 Case studies 11.1 Case study 1: a sum of exponentials tracer disappearance model 11.2 Case study 2: blood flow modeling 11.3 Case study 3: cerebral glucose modeling 11.4 Case study 4: models of the ligand–receptor system 11.5 Case study 5: A model of insulin secretion from a stochastic cellular model to a whole-body model 11.5.1 The stochastic cellular model 11.5.1.1 First-phase secretion 11.5.1.2 Second-phase secretion 11.5.2 The whole-body model 11.6 Case study 6: a model of insulin control WARNING!!! DUMMY ENTRY Glucose effectiveness Insulin sensitivity 11.7 Case study 7: a simulation model of the glucose-insulin system 11.7.1 Model formulation 11.7.1.1 Glucose subsystem 11.7.1.2 Insulin subsystem 11.7.1.3 Unit process models and identification Endogenous glucose production Glucose rate of appearance Glucose utilization Insulin secretion Glucose renal excretion 11.7.2 Results Meal in normal subject Meal in type 2 diabetic subject Daily life for a normal subject Daily life for a subject with impaired glucose tolerance 11.8 Case study 8: the University of Virginia (UVA)/Padova type 1 simulator – in silico artificial pancreas, glucose sensor... 11.8.1 In silico artificial pancreas trials 11.8.2 In silico glucose sensors trials 11.8.3 In silico inhaled insulin trials 11.9 Case study 9: illustrations of Bayesian estimation 11.9.1 Database 11.9.2 The two-exponential model: ML versus MAP 11.9.3 The three-exponential model: ML versus MAP 11.9.4 Two versus three-exponential model order choice 11.9.5 Data-poor situation: ML versus MAP 11.10 Postscript References Index Back Cover