دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Lebedev L.P., Cloud M.J. سری: ISBN (شابک) : 9814273724, 9789814273725 ناشر: WS سال نشر: 2009 تعداد صفحات: 317 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب Introduction to Mathematical Elasticity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر کشش ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با استفاده از مفاهیم کلی در مکانیک کلاسیک و مدلهایی برای فنرها، رشتهها، میلهها، تیرها و غشاهای الاستیک، مقدمهای بر الاستیسیته ریاضی در اختیار خواننده عمومی قرار میدهد. تجزیه و تحلیل عملکردی همچنین برای بررسی مسائل ارزش مرزی عمومی تر برای اجسام الاستیک سه بعدی استفاده می شود، جایی که خواننده برای هر مشکل در نظر گرفته، توضیحی از تغییر شکل ارائه می کند. تعادل از نظر تنش ها؛ معادله سازنده؛ معادله تعادل بر حسب جابجایی؛ فرمول بندی مسائل ارزش مرزی؛ و اصول متغیر، راه حل های تعمیم یافته و شرایط حل پذیری. "مقدمه ای بر کشش ریاضی" نیز برای مهندسان متخصص در کشش، و ریاضیدانانی که بر روی فرمول های انتزاعی مسائل مربوط به مقدار مرزی کار می کنند، مرجع اساسی خواهد بود.
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and, variational principles, generalized solutions and conditions for solvability. "Introduction to Mathematical Elasticity" will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.
Contents......Page 14
Foreword......Page 6
Preface......Page 8
Some Notation......Page 12
1.1 Orientation......Page 18
1.2 Some Words on the Fundamentals of Our Subject......Page 19
1.3 Metric Spaces and Spaces of Particles......Page 21
1.4 Vectors and Vector Spaces......Page 25
1.5 Normed Spaces and Inner Product Spaces......Page 28
1.6 Forces......Page 33
1.7 Equilibrium and Motion of a Rigid Body......Page 38
1.8 D\'Alembert\'s Principle......Page 40
1.9 The Motion of a System of Particles......Page 42
1.10 The Rigid Body......Page 48
1.11 Motion of a System of Particles; Comparison of Trajectories; Notion of Operator......Page 50
1.12 Matrix Operators and Matrix Equations......Page 57
1.13 Complete Spaces......Page 61
1.14 Completion Theorem......Page 65
1.15 Lebesgue Integration and the Lp Spaces......Page 71
1.16 Orthogonal Decomposition of Hilbert Space......Page 77
1.17 Work and Energy......Page 80
1.18 Virtual Work Principle......Page 84
1.19 Lagrange\'s Equations of the Second Kind......Page 87
1.20 Problem of Minimum of a Functional......Page 91
1.21 Hamilton\'s Principle......Page 100
1.22 Energy Conservation Revisited......Page 102
2.2 Two Main Principles of Equilibrium and Motion for Bodies in Continuum Mechanics......Page 106
2.3 Equilibrium of a Spring......Page 108
2.4 Equilibrium of a String......Page 112
2.5 Equilibrium Boundary Value Problems for a String......Page 117
2.6 Generalized Formulation of the Equilibrium Problem for a String......Page 122
2.7 Virtual Work Principle for a String......Page 125
2.8 Riesz Representation Theorem......Page 129
2.9 Generalized Setup of the Dirichlet Problem for a String......Page 132
2.10 First Theorems of Imbedding......Page 133
2.11 Generalized Setup of the Dirichlet Problem for a String, Continued......Page 137
2.12 Neumann Problem for the String......Page 139
2.13 The Generalized Solution of Linear Mechanical Problems and the Principle of Minimum Total Energy......Page 143
2.14 Nonlinear Model of a Membrane......Page 145
2.15 Linear Membrane Theory: Poisson\'s Equation......Page 148
2.16 Generalized Setup of the Dirichlet Problem for a Linear Membrane......Page 149
2.17 Other Membrane Equilibrium Problems......Page 162
2.18 Banach\'s Contraction Mapping Principle......Page 168
3.1 Introduction......Page 174
3.2 An Elastic Bar Under Stretching......Page 175
3.3 Bending of a beam......Page 185
3.4 Generalized Solutions to the Equilibrium Problem for a Beam......Page 192
3.5 Generalized Setup: Rough Qualitative Discussion......Page 196
3.6 Pressure and Stresses......Page 198
3.7 Vectors and Tensors......Page 205
3.8 The Cauchy Stress Tensor, Continued......Page 213
3.9 Basic Tensor Calculus in Curvilinear Coordinates......Page 219
3.10 Euler and Lagrange Descriptions of Continua......Page 224
3.11 Strain Tensors......Page 225
3.12 The Virtual Work Principle......Page 231
3.13 Hooke\'s Law in Three Dimensions......Page 235
3.14 The Equilibrium Equations of Linear Elasticity in Displacements......Page 238
3.15 Virtual Work Principle in Linear Elasticity......Page 241
3.16 Generalized Setup of Elasticity Problems......Page 244
3.17 Existence Theorem for an Elastic Body......Page 248
3.18 Equilibrium of a Free Elastic Body......Page 249
3.19 Variational Methods for Equilibrium Problems......Page 252
3.21 Countable Sets and Separable Spaces......Page 260
3.22 Fourier Series......Page 262
3.23 Problem of Vibration for Elastic Structures......Page 266
3.24 Self-Adjointness of A and Its Consequences......Page 269
3.25 Compactness of A......Page 272
3.26 Riesz–Fredholm Theory for a Linear, Self-Adjoint, Compact Operator in a Hilbert Space......Page 279
3.27 Weak Convergence in Hilbert Space......Page 284
3.28 Completeness of the System of Eigenvectors of a Self- Adjoint, Compact, Strictly Positive Linear Operator......Page 289
3.29 Other Standard Models of Elasticity......Page 294
Appendix A Hints for Selected Exercises......Page 298
Bibliography......Page 310
Index......Page 312