دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: YIP-WAH KAPOOR MONICA CHUNG
سری:
ISBN (شابک) : 9781032101446, 103210144X
ناشر: ROUTLEDGE
سال نشر: 2022
تعداد صفحات: [387]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب INTRODUCTION TO MATERIALS SCIENCE AND ENGINEERING. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر علم و مهندسی مواد. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به روز شده تا منعکس کننده تغییرات در زمینه از زمان انتشار اولین ویرایش، مقدمه ای بر علوم و مهندسی مواد، ویرایش دوم یک دیدگاه بین رشته ای ارائه می دهد، با تاکید بر اهمیت مواد برای کاربردهای مهندسی و پایه های مورد نیاز برای انتخاب، اصلاح و ایجاد مواد را ایجاد می کند. برای برآوردن معیارهای خاص
Updated to reflect the changes in the field since publication of the first edition, Introduction to Materials Science and Engineering, Second Edition offers an interdisciplinary view, emphasizing the importance of materials to engineering applications and builds the basis needed to select, modify, and create materials to meet specific criteria.
Cover Half Title Title Page Copyright Page Table of Contents Preface to the Second Edition Authors Chapter 1 Introduction 1.1 What is Materials Science and Engineering? 1.2 Fundamental Principles 1.3 Atomic/Molecular Bonding 1.3.1 Ionic Bonding 1.3.2 Covalent Bonding 1.3.3 Sp[sup(3)], sp[sup(2)], and sp Hybridization 1.3.4 Metallic Bonding 1.3.5 Dipole Bonding 1.4 Crystal Structures 1.4.1 Body-Centered Cubic 1.4.2 Face-Centered Cubic 1.4.3 Hexagonal Close-Packed 1.5 Polymorphs (Allotropes) 1.6 Labeling Directions and Planes 1.6.1 Hexagonal Crystals 1.7 Determination of Structure and Composition Using X-Rays 1.7.1 X-Ray Diffraction 1.7.2 Other Applications of X-Ray Scattering 1.7.3 Composition Determination from Emission of Characteristic X-Rays 1.8 What’s Next? Problems Chapter 1: Multiple-Choice Questions for Self-Assessment Chapter 2 Imperfections and Diffusion 2.1 Cloudy and Clear Ice Experiments 2.2 Compositional Imperfections – Good or Bad? 2.3 Solid Solutions 2.4 Point Defects 2.5 Line Defects 2.5.1 Edge Dislocations 2.5.2 Screw Dislocations 2.5.3 Dislocation Sources 2.6 Planar Defects 2.6.1 Grain Boundaries 2.6.2 Twin Boundaries 2.6.3 External Surfaces and Other Interfaces 2.7 Precipitates as Three-Dimensional Defects 2.8 Amorphous Solids 2.9 Atomic Diffusion 2.9.1 Derivation of Fick’s First Law of Diffusion 2.9.2 Derivation of Fick’s Second Law of Diffusion 2.9.3 Diffusion due to a Step-Function Concentration Profile 2.9.4 A Word about Diffusion Distance 2.10 Applications of Impurity Diffusion 2.10.1 Case-Hardening 2.10.2 Impurity Doping of Semiconductors 2.11 What’s Next? Appendix: Vacancy Concentration versus Temperature Problems Chapter 2: Multiple-Choice Questions for Self-Assessment Chapter 3 Electrical Properties of Metals and Semiconductors 3.1 World of Electronics 3.2 Definitions and Units 3.3 Classical Model of Electronic Conduction in Metals 3.4 Energy Band Model for Electronic Conduction 3.5 Intrinsic Semiconductors 3.6 Extrinsic Semiconductors 3.6.1 N-Type Semiconductors 3.6.2 P-Type Semiconductors 3.7 Selected Semiconductor Devices 3.7.1 Hall Probe 3.7.2 PN Junction 3.7.3 Light-Emitting Diodes and Lasers 3.7.4 Solar Cells and X-Ray Detectors 3.7.5 Zener Diodes 3.7.6 Bipolar Junction Transistor 3.7.7 Field-Effect Transistor 3.7.8 Thermoelectric Energy Conversion Devices 3.8 Concluding Remarks Problems Chapter 3: Multiple-Choice Questions for Self-Assessment Chapter 4 Mechanical Properties of Metals and Alloys 4.1 Gossamer Condor and Gossamer Albatross 4.2 Definitions and Units 4.2.1 Stress, Strain, and Young’s Modulus 4.2.2 Poisson Ratio 4.2.3 Shear Stress, Shear Strain, and Shear Modulus 4.3 Basic Facts 4.3.1 Young’s Modulus 4.3.2 Yield Strength 4.3.3 Ultimate Tensile Strength 4.3.4 Plastic Strain 4.3.5 Hardness 4.4 Plastic Deformation 4.4.1 Mechanisms of Plastic Deformation 4.4.2 Twinning 4.4.3 Strengthening Mechanisms 4.5 Plastic Deformation of Polycrystalline Materials 4.6 Recovery of Plastically Deformed Metals 4.7 Fracture 4.7.1 Toughness 4.7.2 Fracture Mechanics 4.7.3 Creep 4.7.4 Fatigue 4.8 Mechanical Properties and Surface Chemistry 4.8.1 Fatigue Life of Metals 4.8.2 Ductility of Nickel Aluminide 4.8.3 Tin Whiskers 4.8.4 Biomedical Implant Materials 4.9 Materials Selection: Mechanical Considerations Problems Chapter 4: Multiple-Choice Questions for Self-Assessment Chapter 5 Phase Diagrams 5.1 Rocket Nozzles 5.2 Phase Diagram for a Single-Component System: Graphite/Diamond 5.3 Phase Diagram for a Common Binary System: NaCl-H[sub(2)]O 5.4 Phase Diagram for a Binary Isomorphous System: Cu + Ni 5.5 Binary Eutectic Alloys: Microstructure Development 5.6 Understanding Zone Refining with Phase Diagrams 5.7 Application of Phase Diagrams in Steelmaking 5.7.1 Production of Iron and Steels 5.7.2 Fe-Fe[sub(3)]C Phase Diagram 5.7.3 Microstructure 5.7.3.1 Austenite → Ferrite + Cementite 5.7.3.2 Bainite 5.7.3.3 Martensite 5.7.4 Transformation Kinetics 5.7.5 Alloying Elements 5.7.6 AISI-SAE Naming Conventions 5.8 Shape Memory Alloys 5.9 Application of Phase Diagrams in Making Nanocrystalline Materials Problems Chapter 5: Multiple-Choice Questions for Self-Assessment Chapter 6 Ceramics and Composites 6.1 Recipe for Ice Frisbees 6.2 Crystal Structures of Ceramics 6.3 Imperfections 6.3.1 Point Defects 6.3.2 Impurities 6.4 Mechanical Properties 6.4.1 Brittle Fracture of Ceramics 6.4.2 Flexural Strength 6.4.3 Thermal Shock Resistance 6.4.4 Influence of Porosity 6.4.5 Environmental Effects 6.5 Toughening of Ceramics 6.5.1 Transformation Toughening 6.5.2 Fiber or Particulate Reinforcement 6.5.3 Cermets 6.5.4 Surface Modification 6.6 Mechanical Properties of Composites 6.7 Electrical, Optical, and Thermal Applications 6.7.1 Electrical Insulators 6.7.2 Capacitors 6.7.3 Optical Fibers 6.7.4 Thermal Insulators 6.7.5 Smart Materials Problems Chapter 6: Multiple-Choice Questions for Self-Assessment Chapter 7 Polymers 7.1 Rubber Band Experiments 7.2 Polyethylene as a Typical Polymer 7.3 Beyond Polyethylene: Polymer Structures 7.3.1 Linear Polymers 7.3.2 Branched Polymers 7.3.3 Cross-Linked Polymers 7.3.4 Network Polymers 7.3.5 Stereoisomers 7.4 Common Polymers and Typical Applications 7.5 Solid Solutions (Copolymers) 7.6 Crystallinity 7.7 Melting and Glass-Transition Temperatures 7.8 Mechanical Properties 7.8.1 Elastic Deformation of Semicrystalline Polymers 7.8.2 Plastic Deformation of Semicrystalline Polymers 7.8.3 Strengthening Strategies 7.9 Rubber Band Mystery Unveiled 7.10 Selected Applications 7.10.1 Water Filtration 7.10.2 Lenses and Windows 7.10.3 Liquid Crystal Displays 7.10.4 Solid-State Electrolytes 7.11 Life Sciences Problems Chapter 7: Multiple-Choice Questions for Self-Assessment Chapter 8 Corrosion and Oxidation of Metals and Alloys 8.1 Silverware Cleaning Magic 8.2 Conventional Example of Corrosion 8.3 Electrode Potentials 8.4 Influence of Concentration and Temperature on Electrode Potentials 8.5 Electrical Power by Corrosion: The Cu-Zn Battery 8.6 Rusting of Iron 8.7 Conditions for Corrosion 8.7.1 Composition Difference 8.7.2 Stress 8.7.3 Concentration Difference 8.8 Rate of Corrosion 8.9 Corrosion Control 8.10 Oxidation 8.11 Common Batteries 8.11.1 Lead Acid 8.11.2 Alkaline 8.11.3 Ni-Cd 8.11.4 Ni-MH (Metal Hydride) 8.11.5 Lithium Ion 8.12 Two Examples for Thought 8.12.1 Batteries for Electric Vehicles: Energy Capacity Analysis 8.12.2 Propulsion by Oxidation Problems Chapter 8: Multiple-Choice Questions for Self-Assessment Chapter 9 Magnetic Properties 9.1 Flashlight without Batteries 9.2 Tiny Magnets for Data Storage 9.3 Magnetism Fundamentals and Definitions 9.3.1 Magnetic Field 9.3.2 Magnetic Moment and Magnetization 9.3.3 Magnetic Induction or Flux Density 9.3.4 Saturation Magnetization and Force of Attraction 9.3.5 Magnetostriction 9.4 Diamagnetic and Paramagnetic Materials 9.5 Magnetic Materials: Ferromagnetism and Antiferromagnetism 9.6 Magnetic Materials for Power Generation and Consumer Applications 9.6.1 Power Generation 9.6.2 Transformers and Induction Devices 9.6.3 Magnetic Materials for Data Storage 9.7 Magnets for Magnetic Resonance Imaging (MRI) 9.8 Magnetic Shielding and Damping 9.8.1 Magnetic Shielding 9.8.2 Damping Problems Chapter 9: Multiple-Choice Questions for Self-Assessment Chapter 10 Thin Films 10.1 Why Thin Films? 10.2 Deposition of Thin Films 10.2.1 Evaporation 10.2.1.1 Maximum Evaporation Rate and Vapor Pressure 10.2.1.2 Evaporation Sources 10.2.1.3 Evaporation of Alloys 10.2.1.4 Dependence of Deposition Rate on Source-Substrate Distance 10.2.1.5 Deposition Thickness Monitors 10.2.1.6 Measurement of Film Thickness 10.2.2 Sputtering 10.2.2.1 Magnetron Sputtering 10.2.2.2 Substrate Bombardment 10.2.2.3 Radio Frequency (RF) Sputtering 10.2.3 Chemical Vapor Deposition 10.2.3.1 Sample Reactions 10.3 Structure and Morphology 10.4 Selected Properties and Applications 10.4.1 Transport Properties 10.4.2 Optical Properties 10.4.2.1 Cosmetic or Decorative Coatings 10.4.2.2 Suppressed Reflectivity 10.4.2.3 Enhanced Reflectivity 10.4.3 Mechanical Properties 10.4.3.1 Hardness 10.4.3.2 Elastic Modulus 10.4.3.3 Intrinsic Stress 10.4.4 Friction and Wear Properties 10.4.4.1 Friction and Wear 10.4.4.2 Wear Mechanisms 10.4.4.3 Archard’s Law 10.4.4.4 Wear Rate and Plasticity Index Appendix: Obtaining the Projected Area of Contact in Nanoindentation Experiments Problems Chapter 10: Multiple-Choice Questions for Self-Assessment Chapter 11 Contributing to Sustainable Developments 11.1 Sustainable Development 11.2 Clean Water from Reverse Osmosis 11.3 Affordable Clean Energy from Photovoltaics and Wind Energy 11.4 Ground Transportation and Civil Infrastructure 11.5 Manufacturing Innovation 11.6 The Biggest Innovation 11.7 What’s Next? Answers to Multiple-Choice Questions Index