دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: 1 نویسندگان: Andreas C. Müller, Sarah Guido سری: ISBN (شابک) : 1449369413, 9781449369415 ناشر: O’Reilly Media سال نشر: 2016 تعداد صفحات: 392 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Introduction to Machine Learning with Python: A Guide for Data Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر آموزش ماشین با پایتون: راهنمای دانشمندان داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یادگیری ماشین به بخشی جدایی ناپذیر از بسیاری از برنامه های تجاری و پروژه های تحقیقاتی تبدیل شده است، اما این زمینه منحصر به شرکت های بزرگ با تیم های تحقیقاتی گسترده نیست. اگر حتی به عنوان یک مبتدی از پایتون استفاده می کنید، این کتاب راه های عملی برای ساخت راه حل های یادگیری ماشین خود را به شما آموزش می دهد. با تمام دادههای موجود امروز، برنامههای یادگیری ماشین تنها با تخیل شما محدود میشوند.
شما مراحل لازم برای ایجاد یک برنامه یادگیری ماشینی موفق با پایتون و کتابخانههای یادگیری اسکی را یاد خواهید گرفت. نویسندگان آندریاس مولر و سارا گویدو بر جنبههای عملی استفاده از الگوریتمهای یادگیری ماشین تمرکز میکنند، نه ریاضیات پشت آنها. آشنایی با کتابخانههای NumPy و matplotlib به شما کمک میکند از این کتاب بیشتر بهره ببرید.
با این کتاب، موارد زیر را خواهید آموخت:
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.
You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.
With this book, you’ll learn: