دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Pramod Gupta. Naresh K. Sehgal
سری:
ISBN (شابک) : 3030712699, 9783030712693
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 303
[293]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Introduction to Machine Learning in the Cloud with Python: Concepts and Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمهای بر یادگیری ماشین در ابر با پایتون: مفاهیم و تمرینها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای بر یادگیری ماشین و محاسبات ابری، هر دو از سطح مفهومی، همراه با استفاده از آنها با زیرساختهای اساسی ارائه میکند. نویسندگان بر اصول و بهترین شیوهها برای استفاده از هوش مصنوعی و ML در یک زیرساخت پویا با محاسبات ابری و امنیت بالا تأکید میکنند و خوانندگان را برای انتخاب و استفاده از تکنیکهای مناسب آماده میکنند. موضوعات مهم با استفاده از برنامه های کاربردی واقعی و مطالعات موردی نشان داده می شوند.
This book provides an introduction to machine learning and cloud computing, both from a conceptual level, along with their usage with underlying infrastructure. The authors emphasize fundamentals and best practices for using AI and ML in a dynamic infrastructure with cloud computing and high security, preparing readers to select and make use of appropriate techniques. Important topics are demonstrated using real applications and case studies.
Foreword Preface About the Book Contents Acronyms Part I: Concepts Chapter 1: Machine Learning Concepts 1.1 Terminology 1.2 What Is Machine Learning? 1.2.1 Mitchell´s Notion of Machine Learning 1.3 What Does Learning Mean for a Computer? 1.4 Difference Between ML and Traditional Programming 1.5 How Do Machines Learn? 1.6 Steps to Apply ML 1.7 Paradigms of Learning 1.7.1 Supervised Machine Learning 1.7.2 Unsupervised Machine Learning 1.7.3 Reinforcement Machine Learning 1.7.3.1 Types of Problems in Machine Learning 1.8 Machine Learning in Practice 1.9 Why Use Machine Learning? 1.10 Why Machine Learning Now? 1.11 Classical Tasks for Machine Learning 1.12 Applications of Machine Learning 1.12.1 Applications in Our Daily Life 1.13 ML Computing Needs 1.14 Machine Learning in the Cloud 1.15 Tools Used in Machine Learning 1.16 Points to Ponder References Chapter 2: Machine Learning Algorithms 2.1 Why Choose Machine Learning? 2.2 Supervised Machine Learning Algorithms 2.2.1 Regression 2.2.2 Classification 2.2.3 Machine Learning Algorithms: Supervised Learning 2.2.4 Machine Learning Algorithms: Unsupervised Learning 2.2.4.1 Clustering 2.2.4.2 Dimension Reduction 2.2.4.3 Anomaly Detection 2.2.5 Machine Learning Algorithms That Use Unsupervised Learning 2.3 Considerations in Choosing an Algorithm 2.4 What Are the Most Common and Popular Machine Learning Algorithms? 2.4.1 Linear Regression 2.4.2 Two Types of Linear Regression 2.4.2.1 Simple Linear Regression 2.4.2.2 Multiple Linear Regression 2.4.2.3 Assumptions of Linear Regression 2.4.2.4 Advantages 2.4.2.5 Disadvantages 2.4.2.6 Sample Python Code for Linear Regression 2.4.3 K-Nearest Neighbors (KNN) 2.4.3.1 Assumptions 2.4.3.2 How Does KNN Algorithm Works? 2.4.3.3 Advantages Sample Python Code for KNN Algorithm 2.4.4 Logistic Regression 2.4.4.1 Types of Logistic Regression 2.4.4.2 Assumptions 2.4.4.3 Advantages 2.4.4.4 Disadvantages Sample Python Code for Implementing Logistic Regression 2.4.5 Naïve Bayes Classifier Algorithm 2.4.5.1 Additive Smoothing 2.4.5.2 Types of Naïve Bayes Model 2.4.5.3 Assumptions 2.4.5.4 How Naïve Bayes Algorithm Works? 2.4.5.5 Advantages 2.4.5.6 Disadvantages Sample Python Code for Naïve Bayes Model 2.4.6 Support Vector Machine Algorithm 2.4.6.1 Assumptions 2.4.6.2 Types of SVM 2.4.6.3 Advantages 2.4.6.4 Disadvantages Sample Python Code for SVM 2.4.7 Decision Trees 2.4.7.1 Information Gain 2.4.7.2 Gini Index 2.4.7.3 Decision Tree Terminology 2.4.7.4 Assumptions 2.4.7.5 How Does the Decision Tree Classifier Work? 2.4.7.6 Advantages 2.4.7.7 Disadvantages Sample Python Code for Decision Tree 2.4.8 Ensemble Learning 2.4.8.1 Types of Ensemble Learning Boosting Bootstrap Aggregation (Bagging) 2.4.9 Random Forests 2.4.9.1 Assumptions 2.4.9.2 How Does Random Forest Algorithm Work? 2.4.9.3 Advantages 2.4.9.4 Disadvantages Sample Python Code for Random Forest 2.4.10 K-Means Clustering Algorithm 2.4.10.1 Assumptions 2.4.10.2 How Does K-Means Algorithm Work? 2.4.10.3 Convergence Criterion 2.4.10.4 Advantages 2.4.10.5 Disadvantages Sample Python Code for K-Means 2.4.11 Artificial Neural Networks 2.4.11.1 Advantages 2.4.11.2 Disadvantages 2.5 Usage of ML Algorithms 2.6 Performance Metrics of ML Algorithms 2.6.1 Testing Data 2.6.2 Performance Metrics for Classification Models 2.6.2.1 Confusion Matrix 2.6.2.2 Regression Metrics 2.7 Most Popular Machine Learning Software Tools 2.8 Machine Learning Platforms 2.8.1 Alteryx Analytics 2.8.2 H2O.ai 2.8.3 KNIME Analytics Platform 2.8.4 RapidMiner 2.8.5 Databricks Unified Analytics Platform 2.8.6 Microsoft´s Azure Machine Learning Studio 2.8.7 Google´s Analytics Platform 2.8.8 IBM Watson 2.8.9 Amazon Web Services (AWS) 2.9 Points to Ponder References Chapter 3: Deep Learning and Cloud Computing 3.1 Deep Learning (DL) 3.2 Historical Trends 3.3 How Do Deep Learning Algorithm Learn? 3.3.1 Activation Functions 3.4 Architectures 3.4.1 Deep Neural Network (DNN) 3.4.2 Recurrent Neural Network (RNN) 3.4.3 Convolutional Neural Networks (CNN) 3.5 Choosing a Network 3.6 Deep Learning Development Flow 3.7 What Is Deep About Deep Learning? 3.8 Data Used for Deep Learning 3.9 Difference Between Machine Learning and Deep Learning 3.10 Why Deep Learning Became Popular Now? 3.11 Should You Always Use Deep Learning Instead of Machine Learning? 3.12 Why Is Deep Learning Important? 3.13 What Are the Drawbacks of Deep Learning? 3.14 Which Deep Learning Software Frameworks Are Available? 3.15 Classical Problems of Deep Learning Solves 3.15.1 Image Classification 3.15.2 Natural Language Processing 3.16 The Future of Deep Learning 3.17 Points to Ponder References Chapter 4: Cloud Computing Concepts 4.1 Roots of Cloud Computing 4.2 Key Characteristics of Cloud Computing 4.3 Various Cloud Stakeholders 4.4 Pain Points in Cloud Computing 4.5 AI and ML in Cloud 4.6 Expanding Cloud Reach 4.7 Future Trends 4.8 Summary 4.9 Points to Ponder References Part II: Practices Chapter 5: Practical Aspects in Machine Learning 5.1 Preprocessing Data 5.2 Challenges in Data Preparation 5.3 When to Use Data Preprocessing? 5.4 Framework for Data Preparation Techniques 5.4.1 Data Preparation 5.4.2 Data Selection (Feature Selection) 5.4.3 Data Preprocessing 5.4.4 Data Cleaning 5.4.5 Insufficient Data 5.4.6 Non-representative Data 5.4.7 Substandard Data 5.4.8 Data Transformation 5.4.9 Handling Missing Values 5.5 Modification of Categorical or Text Values to Numerical Values 5.6 Feature Scaling 5.6.1 Techniques of Feature Scaling 5.6.1.1 Feature Scaling: Standardization 5.6.1.2 Feature Scaling: Normalization (Min-Max Normalization) 5.7 Inconsistent Values 5.8 Duplicated Values 5.9 Feature Aggregation 5.10 Feature Sampling 5.10.1 Sampling Without Replacement 5.10.2 Sampling with Replacement 5.11 Multicollinearity and Its Impact 5.12 Feature Selection 5.12.1 Importance of Feature Selection 5.12.2 How Many Features to Have in the Model? 5.12.3 Types of Feature Selection 5.12.3.1 Filter Method 5.12.3.2 Wrapper Methods 5.12.3.3 Embedded Methods (Fig. 5.7) LASSO Regression Ridge Regression 5.13 Dimensionality Reduction 5.13.1 Principal Component Analysis (PCA) 5.13.2 Linear Discriminant Analysis 5.13.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 5.14 Dealing with Imbalanced Data 5.14.1 Use the Right Evaluation Metrics 5.14.2 Sampling-Based Approaches 5.14.3 Algorithm Based Approach 5.15 Points to Ponder References Chapter 6: Information Security and Cloud Computing 6.1 Information Security Background and Context 6.2 Privacy Issues 6.3 Security Concerns of Cloud Operating Models 6.4 Secure Transmissions, Storage, and Computation 6.5 A Few Key Challenges Related to Cloud Computing and Virtualization 6.6 Security Practices for Cloud Computing 6.7 Role of ML for Cybersecurity 6.8 Summary 6.9 Points to Ponder References Chapter 7: Examples of Analytics in the Cloud 7.1 Background 7.2 Analytics Services in the Cloud 7.3 Introduction to MapReduce 7.4 Introduction to Hadoop 7.5 Examples of Cloud-Based ML 7.5.1 Cloud Security Monitoring Using AWS 7.5.2 Greener Energy Future with ML in GCP 7.5.3 Monorail Monitoring in Azure 7.5.4 Detecting Online Hate Speech Using NLP 7.6 Future Possibilities 7.7 Summary 7.8 Points to Ponder References Chapter 8: Health Care in the Cloud: A Few Case Studies 8.1 Introduction 8.2 Existing TCD Solution 8.3 Trail of Bubbles 8.4 Moving Data to the Cloud 8.5 A Reader in the Cloud 8.6 Cloud-Based Collaborative Tools 8.7 Multi-Cloud Solutions 8.8 UCSD Antibiogram: Using Unclassifiable Data 8.9 Next Steps 8.10 Summary 8.11 Points to Ponder References Chapter 9: Trends in Hardware-Based AL and ML 9.1 Revisiting the History of AI 9.2 Current Limitations of AI and ML 9.3 Emergence of AI Hardware Accelerators 9.3.1 Use of GPUs 9.3.2 Use of FPGAs 9.3.3 Dedicated AI Accelerators Using ASICs 9.4 Cerebras´s Wafer Scale AI Engine 9.5 Google Cloud TPUs 9.6 Amazon´s Inference Engine 9.7 Intel´s Movidius VPU 9.8 Apple´s AI Ecosystem 9.9 Summary 9.10 Points to Ponder References Appendix A AI/ML for App Store Predictions Using Python for App Metrics Predictions in Google Play Store Step 1: Obtain Data Step 2: Scrub and Prepare the Data Step 2.1: Null Value Removal/Fills Step 2.2: Duplicate Removal Exact Duplicates (876) Slight Variations (294) Step 2.3: Data Type Conversions Step 2.4: Dummy Variables Step 2.5: Rescale Step 3: Data Exploration Step 4: Categorization Step 4.1: Google App Ratings Step 4.2: Google App Reviews Step 4.3: Google App Sizes Step 4. 4: Google App Installs Step 4.5: Type Step 4.6: Price Step 4.7: Content Rating Step 4.8: Genres Step 4.9: Last Updated Step 4.10: Current Ver Step 4.11: Android Ver Step 4.12: Translated Review Step 4.13: Sentiment Step 4.14: Sentiment Polarity Step 4.15: Sentiment Subjectivity Step 4.16: Merging the Data Step 5: Results Step 5.1: Predicting Installs Step 5.2: Predict Category Step 5.3: Predict Rating Conclusion Migrating Python AI/ML Code to a Public Cloud Setting Up AWS Cloud Machine and Running a Python File on It Appendix B: AI/ML for Letter Recognition Using Python for Letter Recognition Step 1: Obtain Data Step 2: Data Exploration and Attributes Step 3: Data Preprocessing Step 4: Data Classification Models Step 5: Feature Importance and Confusion Matrix Conclusion Future Work and Other Applications Migrating Code to Google Cloud Platform (GCP) Appendix C: Supervised Learning for MNIST Digits Dataset Using Python ML Libraries for Letter Recognition Appendix D: Points to Ponder Chapter 1: Points to Ponder Chapter 2: Points to Ponder Chapter 3: Points to Ponder Chapter 4: Points to Ponder Chapter 5: Points to Ponder Chapter 6: Points to Ponder Chapter 7: Points to Ponder Chapter 8: Points to Ponder Chapter 9: Points to Ponder Appendix E: Questions for Practice Glossary Index