دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Bavafa-Toosi. Yazdan
سری:
ISBN (شابک) : 9780128127483, 0128127481
ناشر: Elsevier Academic Press
سال نشر: 2017
تعداد صفحات: 929
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب مقدمه ای بر سیستم های کنترل خطی: سیستم های کنترل خطی
در صورت تبدیل فایل کتاب Introduction to linear control systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر سیستم های کنترل خطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای بر سیستم های کنترل خطی به عنوان یک مقدمه استاندارد برای سیستم های کنترل خطی برای همه کسانی که به هر طریقی با سیستم های کنترل سروکار دارند طراحی شده است. می تواند به عنوان یک کتاب درسی جامع و به روز برای دوره کارشناسی یک ترم 3 واحدی سیستم های کنترل خطی به عنوان اولین درس در این موضوع در دانشگاه مورد استفاده قرار گیرد. این شامل دانشکده های مهندسی برق، مهندسی مکانیک، مهندسی هوافضا، مهندسی شیمی و نفت، مهندسی صنایع، مهندسی عمران، مهندسی زیستی، اقتصاد، ریاضیات، فیزیک، مدیریت و علوم اجتماعی و غیره است. این کتاب مبانی سیستم های کنترل خطی را پوشش می دهد. دلیل آنها، انواع مختلف، مدلسازی، نمایشها، محاسبات، مفاهیم پایداری، ابزارهایی برای تجزیه و تحلیل و سنتز حوزه زمان و دامنه فرکانس، و محدودیتهای اساسی، با تأکید بر روشهای حوزه فرکانس. هر فصل شامل بخشی در مورد خواندن بیشتر است که در آن موضوعات پیشرفته تر و مراجع مربوط برای مطالعات بیشتر معرفی می شوند. ارائه از لحاظ نظری محکم، معاصر و مستقل است. ضمائم تبدیل لاپلاس و معادلات دیفرانسیل، دینامیک، MATLAB و SIMULINK، رساله مفاهیم و ابزارهای پایداری، رساله روش روث-هورویتز، تکنیک های بهینه سازی تصادفی و همچنین مسائل محدب و غیر محدب، و نمونه امتحانات میان ترم و پایان ترم را پوشش می دهند. این کتاب به دنباله 3 قسمت به همراه ضمائم تقسیم شده است. بخش اول: در این بخش از کتاب، فصل های 1-5، مبانی سیستم های کنترل خطی را ارائه می دهیم. این شامل موارد زیر است: معرفی سیستمهای کنترل، دلیل آن، انواع مختلف آنها، مدلسازی سیستمهای کنترل، روشهای مختلف برای نمایش و محاسبات بنیادی، مفاهیم پایه پایداری و ابزار برای تحلیل و طراحی، تجزیه و تحلیل حوزه زمانی پایه و جزئیات طراحی، و جایگاه ریشه به عنوان یک ابزار تجزیه و تحلیل پایداری و سنتز. بخش دوم: در این بخش از کتاب، فصلهای 6-9، آنچه را که بهعنوان روشهای حوزه فرکانس نامیده میشود، ارائه میکنیم. این به آزمایش اعمال یک ورودی سینوسی به سیستم و مطالعه خروجی آن اشاره دارد. اساساً سه روش مختلف برای نمایش و مطالعه دادههای آزمایش پاسخ فرکانسی فوقالذکر وجود دارد: اینها نمودار نایکویست، نمودار بود و نمودار کرون-منگر-نیکولز هستند. ما این روش ها را با جزئیات مطالعه می کنیم. می آموزیم که خروجی نیز یک سینوسی با فرکانس یکسان است اما به طور کلی با فاز و بزرگی متفاوت است. با تقسیم خروجی بر ورودی، تابع انتقال سینوسی یا فرکانس سیستم را بدست می آوریم که همان تابع انتقال است که متغیر لاپلاس s با s جایگزین شود. در نهایت از نمودار Bode برای فرآیند طراحی استفاده می کنیم. بخش سوم: در این بخش، فصل 10، برخی از موضوعات پیشرفته متفرقه را تحت عنوان محدودیت های بنیادی معرفی می کنیم که باید حداقل در سطح مقدماتی در این دوره کارشناسی گنجانده شود. ما بین برخی از جنبههای ظاهراً متفاوت یک سیستم کنترل پلهایی ایجاد میکنیم و از لحاظ نظری موضوعات مورد مطالعه قبلی را تکمیل میکنیم. ضمائم: کتاب شامل هفت ضمیمه است. پیوست A در تبدیل لاپلاس و معادلات دیفرانسیل است. پیوست B مقدمه ای بر دینامیک است. ضمیمه C مقدمه ای بر MATLAB از جمله SIMULINK است. پیوست D بررسی مفاهیم و ابزارهای پایداری است. واژه نامه و نقشه راه مفاهیم و آزمون های پایداری موجود ارائه شده است که حتی در ادبیات تحقیق نیز وجود ندارد. ضمیمه E بررسی روش Routh-Hurwitz است که در ادبیات نیز وجود ندارد. پیوست F مقدمه ای بر تکنیک های بهینه سازی تصادفی و مسائل محدب و غیر محدب است. در نهایت، ضمیمه G نمونه امتحانات میان ترم و پایان ترم را ارائه می دهد که چندین بار در کلاس تست شده اند.
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.
Cover Introduction to Linear Control Systems Copyright Dedication Preface Acknowledgments Part I: Foundations 1 Introduction 1.1 Introduction 1.2 Why control? 1.3 History of control 1.4 Why feedback? 1.5 Magic of feedback 1.6 Physical elements of a control system 1.7 Abstract elements of a control system 1.8 Design process 1.9 Types of control systems 1.10 Open-loop control 1.10.1 Stability and performance 1.10.2 Sensitivity and robustness 1.10.3 Disturbance 1.10.4 Reliability, economics, and linearity 1.11 Closed-loop control 1.11.1 Stability and performance 1.11.2 Sensitivity and robustness 1.11.3 Disturbance and noise 1.11.4 Reliability, economics, and linearity 1.12 The 2-DOF control structure 1.13 The Smith predictor 1.14 Internal model control structure 1.15 Modern representation—Generalized model 1.16 Status quo 1.16.1 Overview 1.16.1.1 Summary 1.16.1.2 The forgotten 1.16.2 Relation with other disciplines 1.16.3 Challenges 1.16.4 Outlook 1.17 Summary 1.18 Notes and further readings 1.19 Worked-out problems 1.20 Exercises References Further Reading 2 System representation 2.1 Introduction 2.2 System modeling 2.2.1 State-space 2.2.1.1 Linearization 2.2.1.2 Number of inputs and outputs 2.2.2 Frequency domain 2.2.2.1 Finding the output 2.2.3 Zero, pole, and minimality 2.3 Basic examples of modeling 2.3.1 Electrical system as the plant 2.3.2 Mechanical system as the plant 2.3.3 Liquid system as the plant 2.3.4 Thermal system as the plant 2.3.5 Hydraulic system as the plant 2.3.6 Chemical system as the plant 2.3.7 Structural system as the plant 2.3.8 Biological system as the plant 2.3.9 Economics system as the plant 2.3.10 Ecological system as the plant 2.3.11 Societal system as the plant 2.3.12 Physics system as the plant 2.3.13 Delay 2.3.13.1 Exact modeling of delay 2.3.13.2 Approximate modeling of delay 2.3.14 The other constituents 2.3.14.1 Sensors 2.3.14.2 Amplifiers 2.4 Block diagram 2.5 Signal flow graph 2.5.1 Basic terminology of graph theory 2.5.2 Equivalence of BD and SFG methods 2.5.3 Computing the transmittance of an SFG 2.6 Summary 2.7 Notes and further readings 2.8 Worked-out problems 2.9 Exercises References 3 Stability analysis 3.1 Introduction 3.2 Lyapunov and BIBO stability 3.3 Stability tests 3.4 Routh’s test 3.4.1 Special cases 3.5 Hurwitz’ test 3.6 Lienard and Chipart test 3.7 Relative stability 3.8 D-stability 3.9 Particular relation with control systems design 3.10 The Kharitonov theory 3.11 Internal stability 3.12 Strong stabilization 3.13 Stability of LTV Systems 3.14 Summary 3.15 Notes and further readings 3.16 Worked-out problems 3.17 Exercises References 4 Time response 4.1 Introduction 4.2 System type and system inputs 4.3 Steady-state error 4.4 First-order systems 4.4.1 Impulse input 4.4.2 Step, ramp, and parabolic inputs 4.5 Second-order systems 4.5.1 System representation 4.5.2 Impulse response 4.5.3 Step response 4.5.3.1 Time response characteristics 4.5.4 Ramp and parabola response 4.6 Bandwidth of the system 4.6.1 First-order systems 4.6.2 Second-order systems 4.6.3 Alternative derivation 4.6.4 Higher-order systems 4.6.5 Open-loop and closed-loop systems 4.7 Higher-order systems 4.8 Model reduction 4.9 Effect of addition of pole and zero 4.10 Performance region 4.11 Inverse response 4.12 Analysis of the actual system 4.12.1 Sensor dynamics 4.12.2 Delay dynamics 4.13 Introduction to robust stabilization and performance 4.13.1 Open-loop control 4.13.2 Closed-loop control 4.13.2.1 Disturbance and noise rejection and setpoint tracking Design for disturbance and noise rejection Design for sinusoidal reference tracking 4.14 Summary 4.15 Notes and further readings 4.16 Worked-out problems 4.17 Exercises References 5 Root locus 5.1 Introduction 5.2 The root locus method 5.3 The root contour 5.4 Finding the value of gain from the root locus 5.5 Controller design implications 5.5.1 Difficult systems 5.5.1.1 System without NMP zeros 5.5.1.2 Systems with NMP zeros 5.5.1.3 Examples of systems without NMP zeros 5.5.1.4 Examples of system with NMP zeros 5.5.2 Simple systems 5.6 Summary 5.7 Notes and further readings 5.8 Worked-out problems 5.9 Exercises References Part II: Frequency domain analysis & synthesis 6 Nyquist plot 6.1 Introduction 6.2 Nyquist plot 6.2.1 Principle of argument 6.2.2 Nyquist stability criterion 6.2.3 Drawing of the Nyquist plot 6.2.4 The high- and low-frequency ends of the plot 6.2.5 Cusp points of the plot 6.2.6 How to handle the proportional gain/uncertain parameter 6.2.7 The case of j-axis zeros and poles 6.2.8 Relation with root locus 6.3 Gain, phase, and delay margins 6.3.1 The GM concept 6.3.1.1 Definition of GM in the Nyquist plot context 6.3.2 The PM and DM concepts 6.3.3 Stability in terms of the GM and PM signs 6.3.4 The high sensitivity region 6.4 Summary 6.5 Notes and further readings 6.6 Worked-out problems 6.7 Exercises References 7 Bode diagram 7.1 Introduction 7.2 Bode diagram 7.2.1 Logarithm 7.2.2 Decibel 7.2.3 Log magnitude 7.2.4 The magnitude diagram 7.2.5 Octave and decade 7.2.6 Some useful figures to remember 7.2.7 Relation between the transfer function and its constituting components 7.2.7.1 Gain K 7.2.7.2 Zeros at origin (jω)+m 7.2.7.3 Poles at origin (jω)−m 7.2.7.4 Real zeros not at origin (1+jωT)+m 7.2.7.5 Real poles not at origin (1+jωT)−m 7.2.7.6 Error in Lm 7.2.7.7 Error in φ 7.2.7.8 Double zeros [1+2ζωnjω+1ωn2(jω)2]+m 7.2.7.9 Double poles [1+2ζωnjω+1ωn2(jω)2]−m 7.2.8 How to draw the Bode diagram with hand 7.3 Bode diagram and the steady-state error 7.4 Minimum phase and nonminimum phase systems 7.4.1 NMP zero with positive gain: z−s, z%3e0 7.4.2 NMP pole with positive gain: 1/(p−s), p%3e0 7.4.3 NMP zero with negative gain: −(z−s)=s−z, z%3e0 7.4.4 NMP pole with negative gain: −1/(p−s)=1/(s−p), p%3e0 7.4.5 Determination of NMP systems from the Bode diagram 7.5 Gain, phase, and delay margins 7.6 Stability in the Bode diagram context 7.7 The high sensitivity region 7.8 Relation with Nyquist plot and root locus 7.9 Standard second-order systems 7.10 Bandwidth 7.11 Summary 7.12 Notes and further readings 7.13 Worked-out problems 7.14 Exercises References 8 Krohn-Manger-Nichols chart 8.1 Introduction 8.2 S-Circles 8.3 M-Circles 8.4 N-circles 8.5 M- and N-Contours 8.6 KMN chart 8.7 System features: GM, PM, DM, BW, stability 8.7.1 Gain, phase, and delay margins 8.7.2 Stability 8.7.3 Bandwidth 8.8 The high sensitivity region 8.9 Relation with Bode diagram, Nyquist plot, and root locus 8.10 Summary 8.11 Notes and further readings 8.12 Worked-out problems 8.13 Exercises References 9 Frequency domain synthesis and design 9.1 Introduction 9.2 Basic controllers: proportional, lead, lag, and lead-lag 9.3 Controller simplifications: PI, PD, and PID 9.4 Controller structures in the Nyquist plot context 9.5 Effect of the controllers on the root locus 9.6 Design procedure 9.7 Specialized design and tuning rules of PID controllers 9.7.1 Heuristic rules 9.7.2 Analytical rules 9.7.2.1 Pole placement method 9.7.2.2 Direct synthesis 9.7.2.3 Skogestad tuning rules 9.7.3 Optimization-based rules 9.8 Internal model control 9.9 The Smith predictor 9.10 Implementation with operational amplifiers 9.10.1 Proportional control—P-term 9.10.2 Integral control—I-term 9.10.3 Proportional–integral—PI-term 9.10.4 Proportional–derivative—PD-term 9.10.5 Nonideal/actual derivative—D-term 9.10.6 Series proportional-integral-derivative—Series PID 9.10.7 Lead 9.10.8 Lag 9.10.9 Lead or lag 9.10.10 Lead-lag 9.11 Summary 9.12 Notes and further readings 9.13 Worked-out problems 9.14 Exercises References Part III: Advanced Issues 10 Fundamental limitations 10.1 Introduction 10.2 Relation between time and frequency domain specifications 10.3 The ideal transfer function 10.4 Controller design via the TS method 10.5 Interpolation conditions 10.6 Integral and Poisson integral constraints 10.7 Constraints implied by poles and zeros 10.7.1 Implications of open-loop integrators 10.7.2 MP and NMP poles and zeros 10.7.3 Imaginary-axis poles and zeros 10.8 Actuator and sensor limitations 10.8.1 Maximal actuator movement 10.8.2 Minimal actuator movement 10.8.3 Sensor precision 10.8.4 Sensor speed 10.9 Delay 10.10 Eigenstructure assignment by output feedback 10.10.1 Regulation 10.10.2 Tracking 10.11 Noninteractive performance 10.12 Minimal closed-loop pole sensitivity 10.13 Robust stabilization 10.13.1 Structured perturbations 10.13.2 Unstructured perturbations 10.14 Special results for positive systems 10.15 Generic design procedure 10.16 Summary 10.17 Notes and further readings 10.18 Worked-out problems 10.19 Exercises References Appendices A–G Appendix A Laplace transform and differential equations A.1 Introduction A.2 Basic properties and pairs A.2.1 Inverse Laplace transform A.2.2 Table of some Laplace transform pairs A.3 Differentiation and integration in time domain and frequency domain A.3.1 Fourier transform of the Heaviside function A.3.2 Differentiation formula in time domain A.3.3 Integration formula in time domain A.3.4 Frequency domain formulae A.3.5 Some consequences A.4 Existence and uniqueness of solutions to differential equations References Appendix B Introduction to dynamics B.1 Introduction B.1.1 Electrical systems B.1.2 Mechanical systems B.1.3 Chemical systems B.2 Equivalent systems B.3 Worked-out problems References Appendix C Introduction to MATLAB® C.1 Introduction C.2 MATLAB® C.2.1 How to write an M.file C.2.1.1 Script file C.2.1.2 Function file C.2.2 MATLAB® functions by category—control system toolbox C.2.2.1 LTI models C.2.2.2 Model characteristics C.2.2.3 Model conversions C.2.2.4 Model order reduction C.2.2.5 State-space realizations C.2.2.6 Model dynamics C.2.2.7 Model interconnections C.2.2.8 Time responses C.2.2.9 Time delays C.2.2.10 Frequency response C.2.2.11 Pole placement C.2.2.12 LQG design C.2.2.13 Equation solvers C.2.2.14 Graphical user interfaces for control system analysis and design C.3 Simulink C.4 Worked-out problems References Appendix D Treatise on stability concepts and tests D.1 Introduction D.2 A survey on stability concepts and tools D.2.1 Deterministic systems D.2.2 Stochastic systems D.2.3 Miscellaneous D.3 Lipschitz stability D.4 Lagrange, Poisson, and Lyapunov stability D.5 Finite-time and fixed-time stability D.5.1 Fixed-time decentralized stability of large-scale systems D.5.1.1 Large-scale system description D.6 Summary References Appendix E Treatise on the Routh’s stability test E.1 Introduction E.2 Applications of the Routh’s array E.3 The case of imaginary-axis zeros References Appendix F Genetic algorithm: A global optimization technique F.1 Introduction F.2 Convex optimization F.3 Nonconvex optimization F.4 Convexification F.5 Genetic algorithms References Appendix G Sample exams G.1 Sample Midterm Exam (ME) (4h, closed book/notes) G.2 Sample Endterm Exam (EE) (4h, closed book/notes) Index Back Cover