دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات محاسباتی ویرایش: 1 نویسندگان: Ramon E. Moore, R. Baker Kearfott, Michael J. Cloud سری: ISBN (شابک) : 0898716691, 9780898716696 ناشر: Society for Industrial and Applied Mathematics سال نشر: 2009 تعداد صفحات: 235 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1,021 کیلوبایت
در صورت تبدیل فایل کتاب Introduction to interval analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آشنایی با تحلیل فاصله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
خوانندگان ویژگیهای مورد علاقه زیر را خواهند یافت: مثالها و یادداشتهای انگیزشی ابتدایی که به حداکثر کردن شانس موفقیت خواننده در به کارگیری تکنیکها کمک میکنند. تمرینها و مثالهای عملی مبتنی بر MATLAB در متن. مثال ها و توضیحات مبتنی بر INTLAB به همراه مجموعه ای جامع از تمرین ها و راه حل ها و یک ضمیمه با دستورات INTLAB ادغام شده در متن. کتابشناسی گسترده و ضمائم که پس از آشنایی خواننده با موضوع، همچنان منابع ارزشمندی خواهند بود. و یک صفحه وب با پیوندهایی به ابزارهای محاسباتی و سایر منابع مورد علاقه.
مخاطبان: مقدمه ای بر تجزیه و تحلیل بازه ای برای مهندسان و دانشمندان علاقه مند به محاسبات علمی، به ویژه در قابلیت اطمینان، اثرات خطای دور زدن، ارزشمند خواهد بود. ، و تأیید خودکار نتایج. مطالب مقدماتی به ویژه برای متخصصان بهینهسازی جهانی و الگوریتمهای حل محدودیت اهمیت دارد. این کتاب برای معرفی موضوع به دانش آموزان این حوزه ها مناسب است.
مطالب: مقدمه; فصل 1 مقدمه؛ فصل 2: سیستم اعداد بازه. فصل 3: اولین کاربردهای حساب بازه ای. فصل 4: ویژگی های بیشتر حساب بازه ای. فصل 5: مقدمه ای بر توابع بازه ای; فصل 6: توالی فاصله; فصل 7: ماتریس های بازه ای; فصل هشتم: روشهای بازه ای نیوتن; فصل 9: ادغام توابع فاصله; فصل 10: معادلات انتگرال و دیفرانسیل; فصل 11: برنامه های کاربردی; ضمیمه A: مجموعه ها و توابع. پیوست ب: فرمول; ضمیمه ج: نکاتی برای تمرینات منتخب. ضمیمه D: منابع اینترنتی. پیوست E: دستورات و توابع INTLAB. منابع؛ فهرست مطالب.
Readers will find the following features of interest: elementary motivating examples and notes that help maximize the reader s chance of success in applying the techniques; exercises and hands-on MATLAB-based examples woven into the text; INTLAB-based examples and explanations integrated into the text, along with a comprehensive set of exercises and solutions, and an appendix with INTLAB commands; an extensive bibliography and appendices that will continue to be valuable resources once the reader is familiar with the subject; and a Web page with links to computational tools and other resources of interest.
Audience: Introduction to Interval Analysis will be valuable to engineers and scientists interested in scientific computation, especially in reliability, effects of roundoff error, and automatic verification of results. The introductory material is particularly important for experts in global optimization and constraint solution algorithms. This book is suitable for introducing the subject to students in these areas.
Contents: Preface; Chapter 1: Introduction; Chapter 2: The Interval Number System; Chapter 3: First Applications of Interval Arithmetic; Chapter 4: Further Properties of Interval Arithmetic; Chapter 5: Introduction to Interval Functions; Chapter 6: Interval Sequences; Chapter 7: Interval Matrices; Chapter 8: Interval Newton Methods; Chapter 9: Integration of Interval Functions; Chapter 10: Integral and Differential Equations; Chapter 11: Applications; Appendix A: Sets and Functions; Appendix B: Formulary; Appendix C: Hints for Selected Exercises; Appendix D: Internet Resources; Appendix E: INTLAB Commands and Functions; References; Index.
Contents......Page 5
Preface......Page 9
1.1 Enclosing a Solution......Page 13
1.2 Bounding Roundoff Error......Page 15
1.3 Number Pair Extensions......Page 17
2.1 Basic Terms and Concepts......Page 19
2.2 Order Relations for Intervals......Page 21
2.3 Operations of Interval Arithmetic......Page 22
2.4 Interval Vectors and Matrices......Page 26
2.5 Some Historical References......Page 28
3.1 Examples......Page 31
3.3 INTLAB......Page 34
3.4 Other Systems and Considerations......Page 40
4.1 Algebraic Properties......Page 43
4.2 Symmetric Intervals......Page 45
4.3 Inclusion Isotonicity of Interval Arithmetic......Page 46
5.1 Set Images and United Extension......Page 49
5.2 Elementary Functions of Interval Arguments......Page 50
5.3 Interval-Valued Extensions of Real Functions......Page 54
5.4 The Fundamental Theorem and Its Applications......Page 57
5.5 Remarks on Numerical Computation......Page 61
6.1 A Metric for the Set of Intervals......Page 63
6.2 Refinement......Page 65
6.3 Finite Convergence and Stopping Criteria......Page 69
6.4 More Efficient Refinements......Page 76
6.5 Summary......Page 95
7.1 Definitions......Page 97
7.2 Interval Matrices and Dependency......Page 98
7.3 INTLAB Support for Matrix Operations......Page 99
7.4 Systems of Linear Equations......Page 100
7.5 Linear Systems with Inexact Data......Page 104
7.6 More on Gaussian Elimination......Page 112
7.7 Sparse Linear Systems Within INTLAB......Page 113
7.8 Final Notes......Page 115
8.1 Newton’s Method in One Dimension......Page 117
8.2 The Krawczyk Method......Page 128
8.3 Safe Starting Intervals......Page 133
8.4 Multivariate Interval Newton Methods......Page 135
8.5 Concluding Remarks......Page 139
9.1 Definition and Properties of the Integral......Page 141
9.2 Integration of Polynomials......Page 145
9.3 Polynomial Enclosure and Automatic Differentiation......Page 147
9.4 Computing Enclosures for Integrals......Page 153
9.5 Further Remarks on Interval Integration......Page 157
9.6 Software and Further References......Page 159
10.1 Integral Equations......Page 161
10.2 ODEs and Initial Value Problems......Page 163
10.4 Partial Differential Equations......Page 168
11.1 Computer-Assisted Proofs......Page 169
11.2 Global Optimization and Constraint Satisfaction......Page 171
11.3 Structural Engineering Applications......Page 180
11.5 Computation of Physical Constants......Page 181
11.7 For Further Study......Page 182
Appendix A Sets and Functions......Page 183
Appendix B Formulary......Page 189
Appendix C Hints for Selected Exercises......Page 197
Appendix D Internet Resources......Page 207
Appendix E INTLAB Commands and Functions......Page 209
Index......Page 231
References......Page 213