دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.] نویسندگان: Ronald Driggers, Melvin H. Friedman, John Devitt سری: ISBN (شابک) : 1630818321, 9781630818326 ناشر: Artech House سال نشر: 2022 تعداد صفحات: 738 [739] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 108 Mb
در صورت تبدیل فایل کتاب Introduction to Infrared and Electro-optical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر سیستم های مادون قرمز و الکترواپتیکال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه تازه اصلاح شده و به روز شده، مقدمه ای جدید و کامل برای تجزیه و تحلیل و طراحی سیستم های تصویربرداری الکترواپتیکال (EO) ارائه می دهد. نسخه سوم به روز رسانی های متعدد و چندین فصل جدید از جمله موارد مربوط به خلبانی، جستجو و ردیابی مادون قرمز و مدل کسب هدف ساده شده را ارائه می دهد. اصول و اجزای سیستم های مادون قرمز و الکترواپتیکال تغییر ناپذیر خطی (LSI) به طور کامل به تفصیل شرح داده شده است و به شما کمک می کند تا این رویکرد را با محاسبات و دگرگونی های دامنه ترکیب کنید تا به تجزیه و تحلیل سیستم تصویربرداری موفق برسید. در نهایت، مراحل توضیح داده شده در این کتاب منجر به نتایجی در توصیف کمی معیارهای عملکرد مانند توابع انتقال مدولاسیون، حداقل اختلاف دمای قابل حل، حداقل کنتراست قابل حل، و احتمال تمایز شیء می شود. این کتاب شامل مقدمه ای بر توابع دو بعدی و ریاضیات است. که می تواند برای توصیف ویژگی های انتقال تصویر و اجزای سیستم تصویربرداری استفاده شود. شما همچنین مفاهیم پراش سیستم های تصویربرداری منسجم و نامنسجم را یاد می گیرید که محدودیت های اساسی عملکرد آنها را به شما نشان می دهد. با استفاده از روشهای ارزیابی موجود در این مرجع دسکتاپ، میتوانید هم تست حسگر و هم عملکرد میدانی را پیشبینی کنید و اثرات تغییرات اجزا را کمی کنید. این کتاب شامل بیش از 800 معادله صرفه جویی در زمان است و شامل تحلیل ها و طرح های متعددی است. همچنین شامل یک پیوند مرجع به وب سایت ویژه ای است که توسط نویسندگان تهیه شده است که کتاب را در کلاس درس تقویت می کند و به عنوان یک منبع اضافی برای مهندسان شاغل عمل می کند. با پوشش جامع و رویکرد عملی خود، این منبع قوی برای مهندسانی است که به یک مرجع برای محاسبات عملکرد سناریو و سناریوهای اساسی نیاز دارند. تحلیل ها و طرح های متعددی در سراسر متن ارائه شده است. همچنین یک متن عالی برای دانشآموزان سطح بالای علاقهمند به سیستمهای تصویربرداری الکترونیکی است.
This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination.The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.
Introduction to Infrared and Electro-Optical Systems Third Edition Contents Preface Acknowledgments Chapter 1 Introduction 1.1 Introduction to Imaging 1.2 Infrared and EO Systems 1.3 Wavelength Dependencies 1.4 Typical EO Scenario 1.5 Typical Infrared Scenario 1.6 Analytical Parameters 1.7 Sensitivity and Resolution 1.8 Linear Systems Approach 1.9 Summary 1.10 Guide to the References References Chapter 2 Mathematics 2.1 Complex Functions 2.2 Common One-Dimensional Functions 2.3 The 2-D Functions 2.4 Convolution and Correlation 2.5 The Fourier Transform 2.6 Fourier Transform Properties 2.7 Transform Pairs and Delta Function Properties 2.8 Probability 2.9 Important Examples 2.10 Guide to the References References Selected Bibliography Software Chapter 3 Linear Shift-Invariant Systems 3.1 Linear Systems 3.2 Shift Invariance 3.3 Basics of LSI Systems 3.4 Impulse Response 3.5 Transfer Function 3.6 System PSF and MTF Versus Component PSF and MTF 3.7 Spatial Sampling 3.8 Spatial Sampling and Resolution 3.9 Sampled Imaging Systems 3.10 Guide to the References References Selected Bilbiography Chapter 4 Diffraction 4.1 Electromagnetic Waves 4.2 Coherence 4.3 Fresnel and Fraunhofer Diffraction from an Aperture 4.3.1 Fresnel Diffraction 4.3.2 Fraunhofer Diffraction 4.4 Fraunhofer Diffraction from a Thin Lens 4.5 Thin Lens Optical System Diffraction PSF 4.6 Thin Lens Diffraction MTF 4.6.1 Modulation and MTF 4.6.2 Incoherent Diffraction MTF 4.6.3 Coherent Diffraction MTF 4.7 Calculation of Diffraction MTF 4.7.1 Circular Pupil: Coherent MTF 4.7.2 Circular Pupil: Incoherent MTF 4.8 Programs for Calculating Incoherent Diffraction MTF 4.9 Applications of Diffraction Theory 4.9.1 Frequency Analysis of Optical Systems 4.9.2 Application to Geometric Optics 4.9.3 PSF of Distributed Aperture 4.9.4 Optical Image Processing 4.9.5 Stellar Interferometry 4.9.6 Apodization 4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern 4.10 Light Goes Around Corners: The Poisson Spot References Chapter 5 Sources of Radiation 5.1 Radiometry and Photometry 5.1.1 Radiometric Units 5.1.2 Photometric Units 5.2 Infrared Targets and Backgrounds 5.2.1 Blackbody Radiation 5.2.2 Emissivity 5.2.3 Equivalent Differential Temperature (Delta T) 5.2.4 Apparent Differential Temperature (Apparent Delta T) 5.3 EO Targets and Backgrounds 5.3.1 External Sources 5.3.2 Contrast 5.4 Other Sensitivity Considerations 5.4.1 Bidirectional Reflectance Distribution Function 5.4.2 Color Considerations 5.5 Target and Background Spatial Characteristics 5.5.1 Bar Target Representation of Targets 5.5.2 Target Delta T and Characteristic Dimension 5.5.3 Summary of Target Characteristics 5.5.4 Clutter 5.5.5 Simulation of Target Characteristics 5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects References Selected Bibliography Chapter 6 Atmospherics 6.1 Atmospheric Components and Structure 6.2 Atmospheric Transmission 6.3 Absorption 6.4 Scattering 6.5 Path Radiance 6.6 Turbulence 6.7 Atmospheric Modulation Transfer Function 6.8 Models and Tools 6.9 Model Background Discussion 6.10 Some Practical Considerations References Chapter 7 Optics 7.1 Light Representation and the Optical Path Length 7.2 Reflection and Snell’s Law of Refraction 7.3 The Thin Lens, Ray-Tracing Rules, and Gauss’s Equation 7.4 Spherical Mirrors 7.5 Modeling the Thick Lens 7.6 Vergence 7.7 Multiple-Lens Systems 7.8 FOV 7.9 Resolution 7.10 Aperture Stop, Pupils, and Rays 7.11 f-Number and Numerical Aperture 7.12 Telescopes and Angular Magnification 7.13 MTF 7.14 Aberrations 7.15 Optical Materials 7.16 Cold Stop and Cold Shield 7.17 A Typical Optical System 7.18 Diffraction Blur References Chapter 8 Detectors 8.1 Types of Detectors 8.1.1 Photon Detectors 8.1.2 Photoconductors 8.1.3 Photovoltaic 8.1.4 Photoemissive 8.1.5 Thermal Detectors 8.1.6 Bolometers 8.1.7 Pyroelectric Detectors 8.2 CCD and ROIC 8.2.1 CCD 8.2.2 Multiplexed Analog Readout 8.2.3 Column ADC ROIC or D-ROIC 8.3 Detector Sensitivity Analysis 8.3.1 Quantum Efficiency 8.3.2 Responsivity 8.3.3 Sensitivity 8.3.4 Detector Angular Subtense 8.3.5 FPA and Detector Noise (Including Detector 1/f Noise) 8.3.6 Dark Current and Rule’07 8.3.7 1/f Noise 8.3.8 Photon Shot Noise 8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems 8.3.10 BLIP 8.4 EO Systems: Staring and Scanning Configurations 8.4.1 Raster Scan Systems 8.4.2 Linear Scan and TDI 8.4.3 Staring Systems: Focal Plane Arrays 8.5 Detector Transfer Functions 8.6 EO Detectors: Materials and Technology 8.6.1 MWIR and LWIR Photon Detectors 8.6.2 Far Infrared: VLWIR 8.6.3 Uncooled Bolometer 8.6.4 Visible and NIR 8.7 New and Emerging Infrared Detector Technology 8.7.1 Ultra-Large-Format Arrays and Small Pitch 8.7.2 Dual-Band Detectors (Third Generation) 8.7.2 Dual-Band Detectors (Third Generation) 8.7.3 Direct Bond Hybridization 8.7.4 Advanced ROIC Technology and Digital Pixel 8.7.5 Next Generation Imagers 8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and PassiveDetectors References Chapter 9 Electronics 9.1 Detector Circuits 9.2 Conversion of Spatial and Temporal Frequencies 9.3 Electronics Transfer Function 9.4 Noise 9.4.1 Johnson Noise 9.4.2 1/f Noise 9.4.3 Shot Noise 9.5 MTF Boost Filter 9.6 Digital Filter MTF 9.7 CCDs 9.8 Uniformity Correction or NUC 9.9 Design and Construction of Camera Electronics References Chapter 10 Image Processing 10.1 Basics of Sampling Theory 10.2 Applications of Image Filtering 10.2.1 Localized Contrast Enhancement 10.2.2 Boost Filtering 10.2.3 Sensor Design Considerations 10.3 Super-Resolution Image Reconstruction 10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter 10.3.2 Subpixel Shift Estimation 10.3.3 Image Reconstruction 10.3.4 Example and Performance Estimates 10.4 Image Fusion 10.4.1 Fusion Algorithms 10.5 Scene-Based NUC 10.6 Deep Learning 10.6.1 Super-Resolution 10.6.2 Contrast Enhancement 10.6.3 Image Fusion 10.6.4 Scene-Based NUC 10.7 Summary References Chapter 11 Displays, Human Perception, and Automatic Target Recognizers 11.1 Displays 11.2 CRTs 11.2.1 CRT Example Results 11.3 LEDs 11.4 LCDs 11.5 Plasma Displays 11.6 Emerging Display Technologies 11.7 Sampling and Display Processing 11.8 Human Perception and the Human Eye 11.9 MTF of the Eye 11.10 CTF of the Eye 11.11 Automatic Target Recognition References Chapter 12 Historical Performance Models 12.1 Introduction 12.2 Johnson Model Fundamentals 12.3 The MRT Model 12.4 The First FLIRs and Models 12.5 Model Improvements for Resolution and Noise 12.6 Incorporating Eye Contrast Limitations 12.7 Model Improvement to Add Sampling 12.8 Other Improvements Prior to the TTP Metric 12.9 The TRM3 Model 12.10 Triangle Orientation Discrimination (TOD) 12.11 Imager Modeling, Measurement, and Field Performance References Chapter 13 Contrast Threshold and TTP Metric 13.1 CTF of the Naked Eye 13.2 CTF for the Eye-Display System 13.3 Validation of Eye-Display CTF 13.4 Eye-Display Contrast Threshold Model 13.4.1 Eye-Display Contrast Threshold Model 13.4.2 Define Functions 13.4.3 Define Input Parameters 13.4.4 Run the Program 13.4.5 Comparison with Existing Models 13.5 TTP Metric and Range Performance Mode 13.6 Guide to the References References Appendix 13A 13A.1 Direct Calculation of CTFeye–disp,h Chapter 14 EO and Infrared System Performance andTarget Acquisition 14.1 Sensitivity and Resolution 14.2 NETD 14.3 EO Noise and Noise Equivalent Irradiance 14.3.1 Noise Equivalent Irradiance 14.4 3-D Noise 14.5 MTF 14.6 MRTD (Including 2-D MRT) 14.6.1 2-D MRT 14.7 Target Acquisition with Limiting Frequency (Johnson’s N50) 14.8 System CTF 14.9 Target Acquisition with the Target Task Performance (TTP)Metric (and Vollmerhausen’s V50) 14.10 Target Sets 14.11 Classic ISR, NIIRS, and General Image Quality 14.11.1 NIIRS 14.11.2 GIQE Model 14.12 The Performance Benefits of Dual-Band Infrared Imagers 14.12.1 Dual-Band Imagers 14.12.2 Long-Range Target Detection and Identification 14.12.3 Imaging with Hot Targets in the FOV 14.12.4 Cold-Weather Performance 14.12.5 Imaging Through Turbulence 14.12.6 Imaging Through Fog-Oil Smoke 14.12.7 Target Contrast (Up Close) 14.12.8 ATR Performance 14.12.9 Motion Blur and Integration Time 14.12.10 Target Spectral Exploitation 14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement 14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust 14.12.13 Discussion 14.13 Small Detector Infrared Systems 14.13.1 Small Detector Infrared System Fundamentals 14.13.2 Choosing Detector Array Dimensions for SPHD Sensors 14.13.3 Practical Benefits of LWIR SPHD Sensors 14.13.4 MWIR SPHD Sensors 14.13.5 MWIR SPFF Sensors 14.13.6 LWIR SPFF Sensors 14.13.7 Summary 14.14 Persistent Surveillance References Chapter 15 Simplified Target Acquisition Model 15.1 Introduction to the Simple Model 15.2 NVIPM 15.3 Simple Model Based on Fλ/d 15.4 Sensors 15.5 Prediction of R50 15.6 Probability as a Function of Range 15.7 Characteristic Dimension and V50 15.8 Discussion References Selected Bibliography Chapter 16 Pilotage 16.1 Introduction to Pilotage 16.2 TTP with Scene Contrast 16.3 Vollmerhausen and Bui 16.4 Scene Contrast Temperature 16.5 Discussion 16.6 Conclusion References Selected Bibliography Chapter 17 Infrared Search and Track 17.1 Introduction to IRST 17.2 IRST Systems 17.3 Signal Radiometry 17.4 PVF 17.5 Noise and Integration Time 17.6 NEI 17.7 Targets 17.7.1 Graybody Target 17.7.2 Differential Radiance or Intensity 17.7.3 High-Speed Targets 17.7.4 Broadband Intensity Models/Measurements 17.8 Atmospheric Background and Path Radiance 17.9 Broadband Example 17.10 Spectral Example 17.11 Optimization of System Performance 17.12 Scanned Versus Staring Systems 17.13 Discussion 17.14 Conclusions References Chapter 18 Search 18.1 Problem Definition 18.2 Introduction to Search Theory 18.3 Technique for Estimating Search Parameters and Their Uncertainties 18.4 Search Parameters and NVIPM 18.5 Time-Limited Search 18.6 FOR Search 18.7 Multiple Observers, Single Sensor, Unlimited Time, and Shared Knowledge 18.8 Independent Search with Two Sensors, Unlimited Time, and Shared Knowledge 18.9 Time-Dependent Search Parameters Search Model 18.10 Other Work 18.10.1 Neoclassical Search Model 18.11 Guide to References References Selected Bibliography Appendix 18A: Time-Unlimited FOR Search Appendix 18B: Detection Time and Probabilities with SharedInformation 18B.1 Useful Mathematical Result 18B.2 The Mean Time for the First Observer to Detect a Target Given nObservers and PÇ 18B.3 The Mean Time to Detect a Target with Two Observers Using TwoSensors 18B.4 PDF for Detection Time with Two Observers Using Two Sensors Appendix 18C: Mathematica Search Code for TDSP Search Model Chapter 19 Laboratory Measurements of Infrared Imaging System Performance 19.1 Sensitivity 19.2 Resolution 19.3 Human Performance: MRTD 19.4 DMRT 19.5 Image Temporal Response and Stability/Drift 19.6 Operability Considerations 19.7 EO Test Instrumentation 19.8 Environmental Testing References List of Symbols List of Acronyms About the Authors Index