دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: نویسندگان: Thorsten Wohland, Sudipta Maiti, Radek Machan سری: Biophysical Society–IOP Series ISBN (شابک) : 0750320788, 9780750320788 ناشر: IOP Publishing سال نشر: 2021 تعداد صفحات: 368 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Introduction to Fluorescence Correlation Spectroscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر طیف سنجی همبستگی فلورسانس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PRELIMS.pdf Preface Acknowledgements About the authors Thorsten Wohland Sudipta Maiti Radek Macháň CH001.pdf Chapter 1 Introduction 1.1 What is fluorescence correlation spectroscopy all about? 1.2 What do ‘fluorescence’, ‘correlation’ and ‘spectroscopy’ have to do with measuring change? 1.3 What can FCS do for you? 1.4 What does an FCS measurement involve? 1.5 A brief history of FCS 1.5.1 Early work 1.5.2 The year of the invention 1.5.3 The initial progress 1.6 Critical technical steps of the revolution 1.6.1 Fluorescence: towards single molecule sensitivity 1.6.2 Microscopic volume 1.6.3 The confocal technique 1.6.4 Modern detectors 1.6.5 The data processors 1.7 Where is FCS now? References CH002.pdf Chapter 2 Correlation functions 2.1 Introduction 2.2 Fluctuations 2.3 Correlations 2.4 From correlation coefficient to correlation function 2.5 The autocorrelation function (ACF) and its properties 2.6 The cross-correlation function (CCF) and its properties 2.7 Fluctuations and correlations 2.8 Synopsis 2.9 Exercises References CH003.pdf Chapter 3 Fluorescence excitation and detection 3.1 The probe volume in FCS 3.1.1 Introduction 3.1.2 The significance of the size of the probe volume 3.1.3 A brief introduction to the generation of the fluorescence signal 3.1.4 Optical designs applied to obtain an appropriate probe volume for FCS 3.2 Photon detection 3.2.1 Photon counting 3.2.2 Array detectors 3.2.3 Photomultiplier tubes 3.3 Exercises References CH004.pdf Chapter 4 Data structure, correlation and processing 4.1 Software correlators 4.1.1 Binned intensity trace—linear correlator 4.1.2 Binned intensity trace—multiple-tau correlator 4.1.3 Time-tagged intensity trace 4.1.4 Cross-correlation calculation and correlation function amplitude 4.1.5 Correlation function calculation via Fourier transform 4.2 Hardware correlators and their comparison with software correlators 4.3 Temporal resolution of correlation functions 4.4 Statistical filtering in correlation function calculation 4.4.1 Fluorescence lifetime and its integration into FCS datasets 4.4.2 Generation of statistical filters in fluorescence lifetime correlation spectroscopy (FLCS) 4.4.3 Generalisation of the FLCS principle -fluorescence spectral correlation spectroscopy (FSCS) and filtered FCS (fFCS) 4.5 Synopsis 4.6 Exercises References CH005.pdf Chapter 5 Theoretical FCS models 5.1 The autocorrelation function for diffusion 5.2 General characteristics of the ACF for diffusion 5.3 Including multiple particles 5.4 Anomalous diffusion 5.5 Flow 5.6 Including multiple processes 5.7 Spatial and spatiotemporal correlation techniques 5.7.1 Two-focus FCS 5.7.2 Scanning FCS 5.7.3 Circular scanning fluorescence correlation spectroscopy 5.7.4 Image correlation spectroscopy (ICS) 5.7.5 Spatiotemporal image correlation spectroscopy (STICS) 5.7.6 Raster image correlation spectroscopy (RICS) 5.7.7 Imaging fluorescence correlation spectroscopy (Imaging FCS) 5.7.8 The FCS diffusion law 5.8 Other FCS modalities 5.9 Synopsis 5.10 Exercises References CH006.pdf Chapter 6 Theoretical fluorescence cross-correlation spectroscopy (FCCS) models 6.1 Introduction 6.2 Dual-colour FCCS (DC-FCCS) 6.2.1 Cross-correlation amount 6.2.2 Unequal and non-aligned observation volumes 6.2.3 Spectral crosstalk 6.2.4 Non-correlated background 6.2.5 Non-fluorescent binding partners and free fluorophores 6.2.6 Fluorescence quenching and Förster resonance energy transfer (FRET) between fluorophores a and b 6.2.7 Complex stoichiometry 6.3 FCCS modalities derived from DC-FCCS 6.3.1 Single-wavelength FCCS (sw-FCCS) 6.3.2 FCCS with alternating laser excitation 6.4 Statistical filtering in FCCS 6.4.1 Statistical filtering and sources of DC-FCCS artefacts 6.4.2 Statistical filtering and negative CCF amplitudes 6.4.3 Quasi pulsed interleaved excitation FCCS (PIE-FCCS) 6.4.4 Reaction kinetics studied by FCCS 6.5 Synopsis 6.6 Exercises References CH007.pdf Chapter 7 Artefacts in FCS 7.1 Background 7.2 Rare events 7.3 Bleaching 7.4 Sample movement 7.5 Detector-related artefacts: after-pulsing and dead time 7.6 Detector saturation 7.7 Fluorophore saturation 7.8 Scattering 7.9 Autofluorescence 7.10 Sample topology 7.11 Immobile particles 7.12 Refractive index mismatch 7.13 Exercises References CH008.pdf Chapter 8 Data fitting 8.1 Introduction 8.2 What do we minimize? 8.3 The data structure and bias in FCS 8.3.1 The data structure in FCS 8.3.2 The bias of correlation functions 8.4 The standard deviation in FCS 8.4.1 Koppel’s standard deviation and its modifications 8.4.2 Standard deviations from multiple measurements 8.4.3 Standard deviation derived from the intensity trace 8.4.4 Standard deviation and bias within the ACF 8.4.5 The problem of correlations within the ACF 8.5 Non-linear least squares fit 8.5.1 Least squares and the χ2 function 8.5.2 The Levenberg–Marquardt fitting algorithm 8.6 Generalized least squares fit 8.6.1 The covariance matrix for the ACF 8.6.2 Regularization 8.7 Global fit 8.8 Maximum entropy method 8.9 Pairwise model selection using the F-test 8.10 Bayes model selection 8.11 Practical aspects 8.12 Synopsis 8.13 Exercises References CH009.pdf Chapter 9 FCS and FCCS measurement strategies 9.1 Measuring concentrations by FCS 9.1.1 Concentration range accessible by FCS 9.1.2 Effective observation volume calibration 9.1.3 Molecular brightness determined by FCS 9.2 Characterising molecular diffusion by FCS 9.2.1 Confocal observation volume radius calibration 9.2.2 Calibration-free FCS modalities 9.2.3 Imaging FCS and its calibration 9.2.4 Separation of multiple processes contributing to the ACF temporal decay 9.2.5 Diffusion in two-dimensional systems studied by FCS 9.3 Molecular interactions studies by FCS 9.3.1 Using changes in the ACF amplitude 9.3.2 Using changes in the ACF temporal decay 9.4 Molecular interactions studies by FCCS 9.4.1 The importance of relating the CCF amplitude to ACF amplitudes 9.4.2 Determination of the FCCS experiment dynamic range 9.5 Synopsis 9.6 Exercises References CH010.pdf Chapter 10 Where to go from here? 10.1 Introduction 10.2 What FCS can and cannot do 10.3 Data acquisition 10.4 Data analysis 10.5 Related techniques 10.6 Some final remarks References APP1.pdf Chapter Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9