دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Aftab M. Hussain
سری:
ISBN (شابک) : 0367439662, 9780367439668
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 314
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Introduction to Flexible Electronics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر الکترونیک انعطاف پذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Preface Author PART I: Introduction Chapter 1: Introduction 1.1. The Semiconductor Revolution 1.2. History of Flexible Electronics 1.3. Need for Flexible Electronics 1.4. Example Applications Chapter 2: Physics of Flexible Electronics 2.1. Why Are Things Flexible? 2.2. Bending Radius and Curvature 2.3. Plate Flexure 2.3.1. Flexure 2.3.2. Buckling 2.4. The Ball-Spring Model 2.5. Flexibility in Polymers Exercises Chapter 3: Semiconductor Basics 3.1. The Silicon Atom 3.2. The Silicon Lattice 3.3. Doping Silicon 3.4. Semiconductor Fabrication Techniques 3.4.1. The Silicon Wafer 3.4.2. Deposition 3.4.3. Lithography 3.4.4. Etching 3.5. Silicon Transistors 3.5.1. Thin-Film Transistors Exercises PART II: Materials Chapter 4: Flexible Silicon 4.1. The Story of Silicon 4.2. Silicon Substrates 4.2.1. Crystallography 4.2.2. Charge Transport 4.2.3. Semiconductor/Oxide Interface 4.3. Flexible Monocrystalline Silicon 4.3.1. Device-Last Approach 4.3.2. Device-First Approach 4.3.2.1. Top-Down Method 4.3.2.2. Bottom-Up Method 4.4. Silicon TFTs Exercises Chapter 5: Organic Electronic Materials 5.1. Introduction 5.2. Conduction in Organic Molecules 5.3. Properties of Organic Conduction 5.3.1. Carrier Mobility 5.3.2. Electron-Hole Stability 5.3.3. Polaron Transport 5.4. Organic Small Molecules 5.5. Organic Polymers 5.5.1. Copolymers 5.6. Organic Thin Film Deposition 5.7. Organic Single-Crystals 5.8. Organic Field-Effect Transistors (OFETs) Exercises Chapter 6: Metal Oxide Semiconductors 6.1. Introduction 6.2. Metal Oxide Semiconductor Properties 6.3. Ternary and Quaternary Metal Oxides 6.4. Deposition Techniques 6.4.1. Vacuum Deposition 6.4.2. Solution Processing 6.5. Metal Oxide TFTs 6.5.1. Wavy Channel TFTs Exercises Chapter 7: III-V Semiconductors 7.1. Introduction 7.2. Properties 7.3. III-V Wafers 7.3.1. Epitaxy 7.4. Flexible III-V Semiconductors 7.5. III-V Thin Films Exercises Chapter 8: Nanostructured Materials 8.1. Introduction 8.2. Two-Dimensional Materials 8.2.1. Graphene 8.2.2. Transition Metal Dichalcogenides (TMDs) 8.2.3. Hexagonal Boron Nitride (H-BN) 8.2.4. Other 2D Materials 8.3. One-Dimensional Materials 8.3.1. Carbon Nanotubes (CNTs) 8.3.2. Metal Nanowires 8.3.3. Semiconducting Nanowires 8.3.4. Other 1D Materials 8.4. Zero-Dimensional Materials 8.4.1. Metal Nanoparticles 8.4.2. Semiconducting Nanoparticles Exercises PART III: Integration Strategies Chapter 9: Substrates, Transfer, and Bonding 9.1. Introduction 9.2. Flexible Substrates 9.2.1. Metal Foil Substrates 9.2.2. Flexible Glass Substrates 9.2.3. Polymer Substrates 9.3. Transfer Printing 9.3.1. Viscoelastic Stamp 9.3.2. Thermal Release Stamp 9.3.3. Solvent Release Stamp 9.4. Adhesive Bonding Exercises Chapter 10: Barriers, Insulators, and Packaging 10.1. Introduction 10.2. Barrier Thin Films 10.2.1. Permeation Mechanisms 10.2.2. Barrier Materials 10.3. Flexible Dielectrics 10.3.1. Inorganic Dielectrics 10.3.2. Organic Dielectrics 10.3.3. Hybrid Dielectrics 10.4. Packaging Strategies Exercises Chapter 11: Flexible Printed Circuit Boards 11.1. Introduction 11.2. Flexible PCB Design 11.2.1. Flexible PCB Materials 11.2.2. Flexible PCB Fabrication Process 11.3. Flexible Hybrid Electronic (FHE) Systems 11.3.1. Small Silicon Chips 11.3.2. Rigid-Flex Integration 11.4. Fully Flexible Systems Exercises Chapter 12: Printed Electronics 12.1. Introduction 12.2. Ink Formulation 12.3. Inkjet Printing 12.3.1. Jet Formation 12.4. Other 2D Printing Techniques 12.5. Three-dimensional (3D) Printed Electronics 12.6. Nanoimprint Lithography 12.6.1. Self-Aligned Imprint Lithography (SAIL) Exercises PART IV: Applications Chapter 13: Flexible Processors 13.1. Introduction 13.2. Conventional Electronics 13.2.1. Dimensional Scaling 13.2.2. CMOS Technology 13.3. Flexible Transistors 13.3.1. Organic Semiconductors 13.3.2. Metal Oxide Semiconductors 13.3.3. Nanostructured Semiconductors 13.4. Flexible Circuits Exercises Chapter 14: Flexible Memory 14.1. Introduction 14.2. Volatile Memory 14.2.1. Conventional Volatile Memory 14.2.2. Flexible Volatile Memory 14.3. Non-Volatile Memory 14.3.1. Conventional Non-Volatile Memory 14.3.2. Flexible Non-Volatile Memory 14.3.2.1. Flexible ReRAM 14.3.2.2. Flexible FeRAM 14.3.2.3. Flexible PCRAM 14.3.2.4. Flexible Flash Memory Exercises Chapter 15: Flexible Displays 15.1. Introduction 15.2. Conventional Displays 15.3. Flexible Displays 15.3.1. Organic LEDs 15.3.2. Flexible AMOLED Displays 15.3.3. Other Flexible Display Technologies Exercises Chapter 16: Flexible Energy Generation and Storage Devices 16.1. Introduction 16.2. Energy Generation 16.2.1. Photovoltaic Devices 16.2.1.1. Flexible Inorganic Photovoltaics 16.2.1.2. Flexible Organic Photovoltaics 16.2.2. Energy Harvesting Devices 16.3. Energy Storage 16.3.1. Flexible Batteries 16.3.2. Flexible Supercapacitors Exercises Chapter 17: Flexible Sensors and Actuators 17.1. Introduction 17.2. Flexible Sensors 17.2.1. Temperature Sensors 17.2.2. Strain Sensors 17.2.3. Pressure Sensors 17.2.4. Other Sensors 17.3. Flexible Actuators 17.3.1. Microelectromechanical Systems (MEMs) 17.3.2. Electroactive Polymers (EAPs) 17.3.2.1. Dielectric Elastomer Actuators (DEAs) 17.3.3. Piezoelectric Actuators 17.3.4. Shape Memory Alloys Exercises PART V: The Road Ahead Chapter 18: Stretchable Electronics 18.1. Why Stretchable? 18.2. Imparting Stretchability 18.2.1. Stretchability by Material 18.2.2. Stretchability by Design 18.3. Stretchable Conductors 18.3.1. Polymer Composites 18.3.2. Metal Springs 18.3.3. Liquid Metals 18.4. Some Stretchable Electronics Applications Exercises Chapter 19: Reliability and Future Outlook 19.1. Introduction 19.2. Reliability in Flexible Electronics 19.3. Future Outlook References Index