دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Karl-Erich Jaeger (editor), Andreas Liese (editor), Christoph Syldatk (editor) سری: ISBN (شابک) : 3031429982, 9783031429989 ناشر: Springer سال نشر: 2024 تعداد صفحات: 478 [467] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Introduction to Enzyme Technology (Learning Materials in Biosciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر فناوری آنزیم (مواد آموزشی در علوم زیستی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents 1: Introduction to Enzyme Technology What You Will Learn in This Chapter 1.1 The Field of Enzyme Technology 1.2 The Development of Enzyme Research 1.3 Modern Enzyme Research 1.4 Enzymes as Biocatalysts 1.5 Industrial Applications of Enzymes 1.5.1 Enzymes in the Food, Feed, and Textile Industries 1.5.2 Enzymes in the Chemical and Pharmaceutical Industry Take-Home Message References Part I: Fundamentals 2: Enzyme Structure and Function What You Will Learn in This Chapter 2.1 Structure of Enzymes 2.1.1 General Architecture 2.1.2 Primary, Secondary, Tertiary, and Quaternary Structure 2.1.3 Posttranslational Modifications 2.1.4 Cofactors 2.2 Function of Enzymes 2.2.1 Enzymes as Catalysts 2.2.2 Active Site 2.2.3 Activation Energy 2.2.4 Catalytic Mechanisms 2.2.4.1 Acid-Base Catalysis 2.2.4.2 Covalent Catalysis 2.2.4.3 Metal Ion Catalysis 2.2.4.4 Proximity and Orientation Effects 2.2.4.5 Transition State Binding Take-Home Message References 3: Enzyme Modeling: From the Sequence to the Substrate Complex What Will You Learn in This Chapter? 3.1 Investigation of the Protein Sequence Space 3.1.1 Domain Structure of Proteins 3.1.2 Search for Homologous Proteins 3.1.3 Clustering of Protein Families 3.1.4 Outlook: Integration of Sequence Data and Biochemical Data 3.2 Structural Modeling 3.2.1 Search for a Suitable Template 3.2.2 Creation of a Target-Template Alignment 3.2.3 Creation of a Structural Model 3.2.4 Sources of Error and Estimation of Model Quality 3.2.5 Fragment Assembly Methods 3.2.6 Outlook: Modeling by Molecular Dynamics Simulation 3.3 Molecular Docking 3.3.1 Sampling 3.3.2 Scoring 3.3.3 Limitations 3.3.4 Modeling of Protein Complexes 3.3.5 Outlook: Direct Simulation of Substrate Binding 3.4 Mechanistic Models of Protein Structure and Dynamics 3.4.1 Modeling of Conformational Changes 3.4.2 Modeling of the Biochemical Reaction Mechanism 3.4.3 Thermodynamic Calculations 3.5 Outlook: Integration of Mechanistic and Kinetic Modeling Take-Home Message References 4: Enzyme Kinetics What Will You Learn in This Chapter? 4.1 Basic Concepts of Chemical Catalysis 4.2 Homogeneous, Heterogeneous, and Enzymatic Catalysis: Differences and Similarities 4.3 Enzyme Kinetic Models 4.3.1 One-Substrate Reactions 4.3.2 Two-Substrate Reactions 4.4 Determination of the Kinetic Parameters 4.4.1 Measurement of the Initial Reaction Rate 4.4.2 Progress Curve Analysis 4.4.3 Determination of the Catalytic Constants 4.5 Enzyme Inhibition 4.5.1 Competitive Inhibition 4.5.2 Uncompetitive Inhibition 4.5.3 Noncompetitive Inhibition Take-Home Message References Further Reading 5: Enzyme Reactors and Process Control What You Will Learn in This Chapter? 5.1 Parameters for the Description of Ideal Reactors 5.2 Types of Ideal Enzyme Reactors 5.3 Mathematical Balancing of Ideal Reactors 5.3.1 Balancing of an Ideally Mixed Batch Reactor (STR) 5.3.2 Balancing of a Continuously Operated Ideal Flow Tube Reactor (PFR) 5.3.3 Balancing of an Ideally Mixed, Continuously Operated Stirred Tank Reactor (CSTR) 5.3.4 Balancing Under Consideration of Inhibition Phenomena 5.4 Reactor Selection and Process Control 5.4.1 Reactor Selection Without Consideration of Inhibition Phenomena 5.4.2 Reactor Selection for Substrate Surplus Inhibition 5.4.3 Reactor Selection for Product Inhibition 5.4.4 Reactor Selection for Parallel Reactions of the Substrate and Subsequent Reactions of the Product 5.5 Examples of Industrial Enzymatic Processes 5.5.1 Synthesis of Sitagliptin 5.5.2 Production of High Fructose Corn Syrup (HFCS) 5.5.3 Synthesis of Fatty Acid Esters Take-Home Messages References Part II: Methods 6: Enzyme Identification and Screening: Activity-Based Methods What You Will Learn in This Chapter 6.1 Introduction 6.2 The ``Ideal´´ Enzyme 6.3 Resources for Enzyme Identification 6.4 Activity-Based Identification of an ``Ideal´´ Enzyme 6.4.1 Functional Gene Expression as a Prerequisite for Activity-Based Screening 6.4.2 Methods for Activity-Based Screening 6.4.2.1 Fluorescence-Activated Cell Sorting 6.4.2.2 Complementation and Selection 6.4.2.3 Determination of Activity on Agar Plates 6.4.2.4 Determination of Activity in Liquid Assays 6.4.2.5 Chromatographic Methods 6.5 Conclusion and Challenges Take-Home Message References 7: Bioinformatic Methods for Enzyme Identification What You Will Learn in This Chapter 7.1 From Gene Sequence to Enzyme Function 7.1.1 Sequence Analysis and Gene Identification 7.2 Homology Search 7.2.1 BLAST 7.3 Multiple Protein Sequence Alignment 7.3.1 Selection of a Suitable Alignment Program 7.4 Phylogenetic Analyses 7.5 Example: Identification of New Halohydrin Dehalogenases 7.5.1 MSA for the Identification of Specific Sequence Motifs 7.5.2 Homology Search in Public Databases 7.5.3 Verification of Correct Gene Annotation 7.5.4 Phylogenetic Analysis of New Halohydrin Dehalogenases Take-Home Message References 8: Optimization of Enzymes What You Will Learn in This Chapter 8.1 Strategies for the Optimization of Enzymes 8.1.1 Rational Protein Design 8.1.2 Directed Evolution 8.1.3 Semi-rational Design 8.2 Methods for Generating a Mutant Library 8.2.1 Site-Specific Saturation Mutagenesis 8.2.2 Iterative Saturation Mutagenesis (ISM) 8.2.3 ProSAR 8.2.4 Error-Prone PCR 8.2.5 DNA Shuffling 8.2.6 In Vivo Mutagenesis 8.3 Screening and Selection 8.4 Successful Examples of Optimized Biocatalysts Take-Home Message References 9: Enzyme Production What You Will Learn in This Chapter 9.1 Choice of Host Organism 9.1.1 Homologous or Heterologous Protein Production 9.1.2 Limiting Factors in Protein Biosynthesis 9.2 Production in Eukaryotes or Prokaryotes 9.2.1 Prokaryotes 9.2.1.1 Escherichia coli 9.2.1.2 Bacillus Species 9.2.1.3 Alternative Prokaryotic Hosts 9.2.2 Eukaryotes 9.2.2.1 Yeasts 9.2.2.2 Filamentous Fungi 9.2.2.3 Other Eukaryotic Hosts 9.2.3 Cell-Free Production Systems 9.3 Choice of Expression and Regulatory System 9.3.1 Episomal or Chromosomal Recombinant Genes 9.3.2 Stable Replicating Plasmids Require Selection Pressure 9.4 Protein Production Can Be Modified and Optimized at any Level of Protein Biosynthesis 9.4.1 Constitutive Promoters 9.4.2 Controllable Promoters 9.4.2.1 The Lac Promoter 9.4.2.2 The T7 Expression System 9.4.2.3 Other Inducible Promoters 9.4.3 Modifications at Gene and Protein Level 9.4.3.1 Adaptation of a Recombinant Gene to the Host Organism 9.4.3.2 Secretion of a Recombinant Enzyme 9.4.3.3 Toxicity and Solubility of a Recombinant Enzyme Take-Home Message References 10: Enzyme Purification What You Will Learn in This Chapter 10.1 Introduction 10.2 Parameters 10.3 Process Development 10.3.1 Technical Enzymes 10.3.2 Diagnostic Enzymes 10.3.3 Therapeutic Enzymes 10.3.3.1 Cell Harvesting or Cell Separation and Solid/Liquid Separation 10.3.3.2 Precipitation Steps 10.3.3.3 Product Isolation and Concentration 10.3.3.4 Further Chromatography Steps and Affinity Chromatography 10.3.3.5 Affinity Chromatography 10.3.3.6 Virus Removal 10.3.3.7 Formulation and Freeze-Drying 10.3.3.8 Requirements for Purified Therapeutic Enzymes 10.3.4 Application Example: Industrial Purification of Factor VII Take Home Message References 11: Enzyme Immobilization What You Will Learn in This Chapter 11.1 Importance, Definition and Goals 11.2 Methodological Principles 11.2.1 Noncovalent Bonding to Support Materials 11.2.1.1 Novozym 435 11.2.2 Covalent Bonding to Carrier Materials 11.2.2.1 Plexazyme AC 11.2.3 Entrapment in Polymer Matrices 11.2.3.1 Lentikats: β-Galactosidase 11.2.4 Inclusion in Membranes 11.2.4.1 Amicon: Stirring Cell 11.2.5 Carrier-Free Cross-Linking 11.2.5.1 CLEA 301: Penicillin Acylase 11.3 Molecular and Physicochemical Effects 11.3.1 Molecular Modification 11.3.2 Limitations of Mass Transfer 11.4 Performance Characteristics 11.4.1 Characteristics of the Immobilization Process 11.4.2 Characteristics of Immobilizates 11.5 Choice of Methods Take Home Message References 12: Enzymatic Reactions in Unusual Reaction Media What You Will Learn in This Chapter 12.1 Introduction 12.2 Enzymatic Reactions Using Organic Solvents 12.2.1 Classification of Organic Solvents 12.2.2 Effects of Organic Solvents on Enzyme Activity 12.2.3 Enzymatic Reactions with Addition of Water-Miscible Solvents 12.2.4 Enzymatic Reactions in Two-Phase Systems with Little or Non-Water-Miscible Solvents 12.2.5 Enzymatic Reactions in Almost Anhydrous Organic Solvents 12.2.6 Basic Rules for Working with Enzymes in Almost Anhydrous Organic Solvents 12.3 Ionic Liquids, Deep Eutectic Solutions, and Supercritical Fluids as Reaction Media for Enzymatic Reactions 12.3.1 Ionic Liquids 12.3.2 Enzymatic Reactions in Ionic Liquids 12.3.3 Deep Eutectic Solutions 12.3.4 Enzymatic Reactions in Deep Eutectic Solutions 12.3.5 Supercritical Fluids 12.3.6 Enzymatic Reactions in Supercritical Fluids 12.4 Enzymatic Reactions Under Complete Solvent-Free Conditions Take Home Message References Part III: Applications 13: Principles of Applied Biocatalysis What You Will Learn from This Chapter 13.1 Cofactor-Dependent Biotransformations 13.1.1 Substrate-Coupled Systems 13.1.2 Enzyme-Coupled Systems 13.1.3 Self-Sufficient Cascades 13.2 Approaches to Substrate Dosing 13.2.1 Fed-Batch Processes 13.2.2 Use of Adsorber Materials 13.2.3 Multiphasic Systems 13.2.4 Substrate Supply from the Gas Phase 13.3 Approaches to Product Removal 13.3.1 Stripping of By-Products 13.3.2 Multiphasic Systems 13.3.3 Direct Crystallization of the Product 13.3.4 Membrane Process 13.3.5 Use of Ion Exchange Resins 13.4 Approaches to Deracemization 13.5 Conclusion and Prospects Take Home Message References 14: Enzymes in the Chemical and Pharmaceutical Industry What You Will Learn in This Chapter 14.1 Origins of Enzyme Use in the Chemical and Pharmaceutical Industry 14.2 Enzymes in the Chemical Industry 14.2.1 Lipase (EC 3.1.1.3) 14.2.1.1 Preparation of (R)-Phenylethylamine 14.2.2 d-Hydantoinase (EC 3.5.2.2) 14.2.2.1 Preparation of D-p-Hydroxyphenylglycine 14.2.3 Nitrile Hydratase (EC 4.2.1.84) 14.2.3.1 Production of Acrylamide 14.2.3.2 Preparation of Nicotinamide 14.2.4 Alkane Monooxygenase (EC 1.14.15.3) and ω-Transaminase (EC 2.6.1.62)-Based Multienzyme Process 14.2.4.1 Preparation of ω-Amino Lauric Acid 14.3 Enzymes in the Pharmaceutical Industry 14.3.1 Enzymes for the Synthesis of Precursors and Building Blocks 14.3.1.1 Preparation of Hydroxynitrile 14.3.1.2 Preparation of Cipargamine 14.3.1.3 Production of Antibiotics 14.3.2 Enzymes in the Synthesis of APIs 14.3.2.1 Preparation of Sitagliptin Phosphate 14.3.3 Enzymes for Drug Metabolism Studies 14.3.3.1 Isoenzymes 14.3.3.2 Inhibition 14.3.3.3 Metabolite Identification 14.3.3.4 Prodrugs 14.3.4 Enzymes in the Synthesis of Natural Products 14.3.4.1 Preparation of Artemisinin 14.3.4.2 Enzymes for the Modification of Complex Structures 14.3.5 Enzymes as Drugs 14.4 Conclusion Take Home Message References 15: Enzymes for the Degradation of Biomass What You Will Learn in This Chapter 15.1 Composition of Biomass 15.1.1 Cellulose 15.1.2 Hemicellulose 15.1.3 Pectin 15.1.4 Lignin 15.2 Cellulases 15.2.1 Cellobiohydrolases (CBHs) 15.2.2 Endoglucanases (EGs) 15.2.3 β-Glucosidases (BG) 15.2.4 Polysaccharide Monooxygenases (PMOs) 15.3 Additional Enzymes for Biomass Degradation 15.3.1 Hemicellulases 15.3.2 Pectinases 15.3.3 Ligninases 15.4 Pretreatment of Biomass 15.4.1 Physical Pretreatment 15.4.2 Chemical Pretreatment 15.4.3 Biological Pretreatment Methods 15.5 Process Overview 15.5.1 Biomass Cultivation 15.5.2 Transport 15.5.3 Pretreatment 15.5.4 Enzymatic Hydrolysis 15.5.5 Ethanol Production Take Home Message References 16: Enzymes in Food Production What You Will Learn in This Chapter 16.1 Determining Factors of Enzymes in the Food Industry 16.1.1 Endogenous and Exogenous Enzymes in Foodstuffs 16.1.2 Requirements for the Use of Exogenous Enzymes in Food Processing 16.1.3 Recombinant Production of Enzymes for the Food Industry 16.2 Oxidoreductases 16.2.1 Importance to the Food Industry 16.2.2 Applications in the Food Industry 16.3 Transferases 16.3.1 Importance to the Food Industry 16.3.2 Applications in the Food Industry 16.4 Hydrolases 16.4.1 Importance to the Food Industry 16.4.2 Lipases/Esterases: Applications in the Food Industry 16.4.3 Glycosidases: Applications in the Food Industry 16.4.4 Proteases/Peptidases: Applications in the Food Industry 16.5 Lyases 16.5.1 Importance to the Food Industry 16.5.2 Areas of Application in the Food Industry 16.6 Isomerases 16.6.1 Importance to the Food Industry 16.6.2 Applications in the Food Industry 16.7 Ligases 16.7.1 Importance to the Food Industry 16.7.2 Application in the Food Industry 16.8 Conclusion Further Reading References 17: Enzymes in Detergents and Cleaning Agents What Do You Learn in This Chapter? 17.1 History of Detergent Enzymes 17.2 Production of the Enzymes 17.3 Production of Detergents and Cleaning Agents Containing Enzymes 17.3.1 Manual Dishwashing Detergents 17.4 Proteases 17.4.1 Molecules 17.4.2 Enzyme Action 17.4.3 Stability, Toxicity, and Environmental Aspects of Proteases 17.5 Amylases 17.5.1 Molecules 17.5.2 Enzyme Action 17.6 Cellulases 17.6.1 Molecules 17.6.2 Enzyme Action 17.7 Mannanases 17.7.1 Molecules 17.7.2 Enzyme Action 17.8 Lipases 17.8.1 Molecules 17.8.2 Enzyme Action 17.9 Pectate Lyases 17.9.1 Molecules 17.9.2 Enzyme Action 17.10 Sustainability Aspects 17.11 Conclusion and Outlook Take Home Message References 18: Enzymes and Biosensor Technology What You Will Learn in This Chapter 18.1 Chemo- and Biosensors 18.1.1 Definition: Chemo/Biosensor 18.1.2 Classification of Biosensors 18.1.3 Sensor Parameters 18.2 Electrochemical Enzyme Biosensors 18.2.1 Potentiometry 18.2.1.1 Definitions 18.2.1.2 Potentiometric Enzyme Electrodes 18.2.2 Amperometry 18.2.2.1 Definitions 18.2.2.2 Amperometric Enzyme Electrodes 18.2.3 Application Examples 18.3 Looking Beyond the ``End of One´s Nose´´: Alternative Transductor Principles and Biomolecules 18.3.1 Optical Biosensors 18.3.2 Mass-Sensitive Biosensors 18.4 Conclusion and Outlook 18.4.1 Microsystems 18.4.2 Molecular Gates with Enzyme Sensors Take-Home Message References 19: Therapeutic Enzymes What You Will Learn in This Chapter 19.1 External Applications of Therapeutic Enzymes 19.2 Oral Applications of Enzymes 19.3 Intravenous Use of Therapeutic Enzymes 19.3.1 Urokinase 19.3.2 Thrombin 19.3.3 Asparaginase and Pegasparagase 19.3.4 Therapeutic Enzymes for the Treatment of Rare Diseases 19.3.5 The PEGylation of Proteins 19.4 Conclusion and Outlook Take Home Message References 20: Enzymes in Molecular Biotechnology What You Will Learn in This Chapter 20.1 Nucleic Acid Synthesis 20.1.1 DNA Polymerases 20.1.2 RNA Polymerases 20.1.3 Reverse Transcriptase 20.2 Nucleic Acid-Cutting Enzymes 20.2.1 Deoxyribonucleases 20.2.1.1 DNA-Specific Endonuclease Deoxyribonucleases I 20.2.1.2 Structure-Specific DNA Endonucleases Apurinic/Apyrimidinic (AP) Endonuclease 1, APE1 Endonuclease IV, Endo IV Endonuclease V, Endo V Phage T7 Endonuclease I, T7EI 20.2.1.3 Restriction Endonucleases, REases Naming REases Classification of REase 20.2.1.4 Sugar-Nonspecific Nucleases Benzonase Mung Bean Nuclease P1 Nuclease S1 Nuclease Micrococcal Nuclease, MNase 20.2.1.5 Exonucleases Exonuclease I (EXOI) Exonuclease III, (ExoIII) Exonuclease VII (EXOVII) Lambda Exonuclease (λ Exo) Bal 31 Nucleases 20.2.2 Ribonucleases 20.2.2.1 Endoribonuclease RNase A RNase H 20.3 Programmable Nucleases 20.4 DNA/RNA Modifying Enzymes 20.4.1 Ligases 20.4.2 Phosphatases 20.4.3 Kinases 20.4.4 Terminal Transferases 20.4.5 Methyltransferase 20.4.6 Capping Enzyme 20.4.7 Glycosylases 20.4.8 Cre-Recombinase 20.4.9 Single-Strand Binding Proteins 20.4.10 RecA-Type Proteins 20.4.11 Single-Strand Binding Proteins 20.4.12 DNA Helicases 20.5 Questions Take Home Message/Conclusion References Further Reading-Books Further Reading-Online Resources Specific References To Polymerases in General To DNA Polymerases for PCR To DNA Polymerases for Sequencing To Non-coding RNA To Reverse Transcription and Retrotransposons To Nucleases To Programmable Nucleases To Capping Enzyme To Cre-Recombinase To Helicase Index