دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Rafael A. Irizarry
سری:
ISBN (شابک) : 9780367357986
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: [708]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 74 Mb
در صورت تبدیل فایل کتاب Introduction to Data Science Data Analysis and Prediction Algorithms with R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحلیل داده ها و الگوریتم های پیش بینی علم داده با R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"کتاب با مرور اصول اولیه R و نظم و ترتیب شروع می شود. شما R را در سراسر کتاب یاد می گیرید، اما در قسمت اول به بلوک های سازنده مورد نیاز برای ادامه یادگیری در طول بقیه کتاب می پردازیم"--
"The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book"--
Preface Acknowledgements Introduction Case studies Who will find this book useful? What does this book cover? What is not covered by this book? I R Installing R and RStudio Installing R Installing RStudio Getting Started with R and RStudio Why R? The R console Scripts RStudio Installing R packages R Basics Case study: US Gun Murders The very basics Exercises Data types Data frames Exercises Vectors Coercion Exercises Sorting Exercise Vector arithmetics Exercises Indexing Exercises Basic plots Exercises Programming basics Conditional expressions Defining functions Namespaces For-loops Vectorization and functionals Exercises The tidyverse Tidy data Exercises Manipulating data frames Exercises The pipe: %>% Exercises Summarizing data Sorting data frames Exercises Tibbles The dot operator do The purrr package Tidyverse conditionals Exercises Importing data Paths and the working directory The readr and readxl packages Exercises Downloading files R-base importing functions Text versus binary files Unicode versus ASCII Organizing Data with Spreadsheets Exercises II Data Visualization Introduction to data visualization ggplot2 The components of a graph ggplot objects Geometries Aesthetic mappings Layers Global versus local aesthetic mappings Scales Labels and titles Categories as colors Annotation, shapes, and adjustments Add-on packages Putting it all together Quick plots with qplot Grids of plots Exercises Visualizing data distributions Variable types Case study: describing student heights Distribution function Cumulative distribution functions Histograms Smoothed density Exercises The normal distribution Standard units Quantile-quantile plots Percentiles Boxplots Stratification Case study: describing student heights (continued) Exercises ggplot2 geometries Exercises Data visualization in practice Case study: new insights on poverty Scatterplots Faceting Time series plots Data transformations Visualizing multimodal distributions Comparing multiple distributions with boxplots and ridge plots The ecological fallacy and importance of showing the data Data visualization principles Encoding data using visual cues Know when to include 0 Do not distort quantities Order categories by a meaningful value Show the data Ease comparisons Think of the color blind Plots for two variables Encoding a third variable Avoid pseudo-three-dimensional plots Avoid too many significant digits Know your audience Exercises Case study: impact of vaccines on battling infectious diseases Exercises Robust summaries Outliers Median The inter quartile range (IQR) Tukey's definition of an outlier Median absolute deviation Exercises Case study: self-reported student heights III Statistics with R Introduction to Statistics with R Probability Discrete probability Monte Carlo simulations for categorical data Independence Conditional probabilities Addition and multiplication rules Combinations and permutations Examples Infinity in practice Exercises Continuous probability Theoretical continuous distributions Monte Carlo simulations for continuous variables Continuous distributions Exercises Random variables Random variables Sampling models The probability distribution of a random variable Distributions versus probability distributions Notation for random variables The expected value and standard error Central Limit Theorem Statistical properties of averages Law of large numbers Exercises Case study: The Big Short Exercises Statistical Inference Polls Populations, samples, parameters and estimates Exercises Central Limit Theorem in practice Exercises Confidence intervals Exercises Power p-values Association Tests Exercises Statistical models Poll aggregators Data driven models Exercises Bayesian statistics Bayes Theorem simulation Hierarchical models Exercises Case study: Election forecasting Exercise The t-distribution Regression Case study: is height hereditary? The correlation coefficient Conditional expectations The regression line Exercises Linear Models Case Study: Moneyball Confounding Least Squared Estimates Exercises Linear regression in the tidyverse Exercises Case study: Moneyball (continued) The regression fallacy Measurement error models Exercises Association is not causation Spurious correlation Outliers Reversing cause and effect Confounders Simpson's paradox Exercises IV Data Wrangling Introduction to Data Wrangling Reshaping data gather spread separate unite Exercises Joining tables Joins Binding Set operators Exercises Web Scraping HTML The rvest package CSS selectors JSON Exercises String Processing The stringr package Case study 1: US murders data Case study 2: self reported heights How to escape when defining strings Regular expressions Search and replace with regex Testing and improving Trimming Changing lettercase Case study 2: self reported heights (continued) String splitting Case study 3: extracting tables from a PDF Recoding Exercises Parsing Dates and Times The date data type The lubridate package Exercises Text mining Case study: Trump tweets Text as data Sentiment analysis Exercises V Machine Learning Introduction to Machine Learning Notation An example Exercises Evaluation Metrics Exercises Conditional probabilities and expectations Exercises Case study: is it a 2 or a 7? Smoothing Bin smoothing Kernels Local weighted regression (loess) Connecting smoothing to machine learning Exercises Cross validation Motivation with k-nearest neighbors Mathematical description of cross validation K-fold cross validation Exercises Bootstrap Exercises The caret package The caret train functon Cross validation Example: fitting with loess Examples of algorithms Linear regression Exercises Logistic regression Exercises k-nearest neighbors Exercises Generative models Exercises Classification and Regression Trees (CART) Random Forests Exercises Machine learning in practice Preprocessing k-Nearest Neighbor and Random Forest Variable importance Visual assessments Ensembles Exercises Large datasets Matrix algebra Exercises Distance Exercises Dimension reduction Exercises Recommendation systems Exercises Regularization Exercises Matrix factorization Exercises Clustering Hierarchical clustering k-means Heatmaps Filtering features Exercises VI Productivity tools Introduction to productivity tools Accessing the terminal and installing Git Accessing the terminal on a Mac Installing Git on the Mac Installing Git and Git Bash on Windows Accessing the terminal on Windows Organizing with Unix Naming convention The terminal The filesystem Unix commands Some examples More Unix commands Preparing for a data science project Advanced Unix Git and GitHub Why use Git and GitHub? GitHub accounts GitHub repositories Overview of Git Initializing a Git directory Using Git and GitHub in RStudio Reproducible projects with RStudio and R markdown RStudio projects R markdown Organizing a data science project