دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pradip Niyogi, Sunil Kumar Chakrabartty, Manas Kumar Laha سری: ISBN (شابک) : 8177587641, 9788177587647 ناشر: Pearson Education Canada سال نشر: 2009 تعداد صفحات: 598 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Introduction to Computational Fluid Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر دینامیک سیالات محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover About the Authors Preface Acknowledgements Contents Part I: Finite Difference Method for Partial Differential Equations Chapter 1: Introduction and Mathematical Preliminaries 1.1 Introduction 1.2 Typical Partial Differential Equations in Fluid Dynamics 1.3 Types of Second-order Equations 1.3.1 Characteristics of Second-Order Equations 1.4 Well-posed Problems 1.4.1 Examples of Well-Posed Problems 1.4.2 An Ill-Posed Problem 1.5 Properties of Linear and Quasilinear Equations 1.5.1 Qualitative Properties of Partial Differential Equations 1.6 Physical Character of Subsonic and Supersonic Flows 1.7 Second-order Wave Equations 1.7.1 Cauchy Problem for the Wave Equation 1.7.2 Domain of Dependence and Range of Influence 1.8 System of First-order Equations 1.8.1 Classification and Types of First-Order Systems 1.8.2 Conservation Form and Conservation-Law Form 1.9 Weak Solutions 1.10 Summary 1.11 Key Terms Chapter 2: Finite Difference and Finite Volume Discretisations 2.1 Introduction 2.2 Finite Difference Discretisation 2.3 Discretisation of Derivatives 2.4 Consistency, Convergence, and Stability 2.5 Finite Volume Discretisation 2.5.1 Cell-Centred Scheme 2.6 Face Area and Cell Volume 2.6.1 Equivalence Between Finite Difference and Finite Volume Methods 2.7 Summary 2.8 Key Terms 2.9 Exercise 2 Chapter 3: Equations of Parabolic Type 3.1 Introduction 3.2 Finite Difference Scheme for Heat Conduction Equation 3.2.1 FTCS Scheme: Truncation Error and Consistency 3.2.2 Modified Equation 3.2.3 FTCS Scheme: Convergence 3.2.4 FTCS Scheme: Stability 3.2.5 Derivative Boundary Conditions 3.3 Crank-Nicholson Implicit Scheme 3.4 Analogy with Schemes for Ordinary Differential Equations 3.4.1 Thomas Algorithm for Tridiagonal Systems 3.4.2 Crank-Nicholson Scheme: Truncation Error, Consistency, and Convergence 3.4.3 Dissipative and Dispersive Errors 3.4.4 Stability of the Crank-Nicholson Scheme 3.5 A Note on Implicit Methods 3.6 Leap-frog and DuFort-Frankel Schemes 3.6.1 Truncation Error of the DuFort-Frankel Scheme 3.6.2 Stability of DuFort-Frankel Scheme 3.7 Operator Notation 3.8 The Alternating Direction Implicit (ADI) Method 3.8.1 ADI Scheme 3.8.2 Splitting and Approximate Factorisation 3.8.3 Stability of the ADI Scheme 3.8.4 Program 3.1: adi.f 3.9 Summary 3.10 Key Terms 3.11 Exercise 3 Chapter 4: Equations of Hyperbolic Type 4.1 Introduction 4.2 Explicit Schemes 4.2.1 FTCS Scheme 4.2.2 FTFS Scheme 4.2.3 Upwind Scheme: First Order 4.2.4 Upwind Scheme: Modified Equation 4.2.5 The Lax Scheme 4.2.6 Consistency of Lax Scheme 4.2.7 Lax Scheme: Modified Equation 4.2.8 The Leap-Frog Scheme 4.3 Lax-Wendroff Scheme and Variants 4.3.1 Lax-Wendroff Scheme: Modified Equation 4.3.2 Two-Step Lax-Wendroff Scheme 4.3.3 The MacCormack Scheme 4.3.4 Upwind Scheme: Warming-Beam 4.4 Implicit Schemes 4.5 More on Upwind Schemes 4.6 Scalar Conservation Law: Lax-Wendroff and Related Schemes 4.6.1 Program 4.1: Ixmc.f 4.6.2 Implicit Schemes for Scalar Conservation Law 4.7 Hyperbolic System of Conservation Laws 4.7.1 System of Conservation Laws 4.8 Second-order Wave Equation 4.8.1 Stability of the Leap-Frog Scheme for the Wave Equation 4.8.2 An Implicit Scheme for the Second-Order Wave Equation 4.8.3 Stability of the Implicit Scheme 4.9 Method of Characteristics for Second-order Hyperbolic Equations 4.10 Model Convection-Diffusion Equation 4.10.1 Steady Convection-Diffusion Equation 4.10.2 Linear Convection-Diffusion Equation: FTCS Scheme 4.10.3 First-Order Upwind Scheme for Convection-Diffusion Equation 4.10.4 Burgers Equation 4.11 Summary 4.12 Key Terms 4.13 Exercise 4 Chapter 5: Equations of Elliptic Type 5.1 Introduction 5.2 The Laplace Equation in Two Dimension 5.3 Iterative Methods for Solution of Linear Algebraic Systems 5.3.1 The Jacobi and the Gauss-Seidel Schemes 5.4 Solution of the Pentadiagonal System 5.4.1 Program 5.1: sor.f 5.5 Approximate Factorisation Schemes 5.5.1 Analysis of Line Gauss-Seidel Scheme for the Laplace Equation 5.5.2 Time-Dependent Analogy 5.5.3 Program 5.2: afl.f 5.6 Grid Generation Example 5.7 Body-fitted Grid Generation Using Elliptic-type Equations 5.7.1 Solution of the Algebraic Equations by AFI Scheme 5.8 Some Observations of AF Schemes 5.9 Multi-grid Method 5.9.1 Program 5.3: mgc.f 5.10 Summary 5.11 Key Terms 5.12 Exercise 5 Chapter 6: Equations of Mixed Elliptic-Hyperbolic Type 6.1 Introduction 6.2 Tricomi Equation 6.3 Transonic Computations Based on TSP Model 6.3.1 Finite Difference Discretisation 6.3.2 Implementation of Boundary Conditions 6.3.3 Iterative Solution of the Discretised Equations 6.3.4 Artificial Viscosity and Conservative Schemes 6.3.5 Computational Results 6.3.6 Program 6.1 tsc.f 6.4 Summary 6.5 Key Terms 6.6 Exercise 6 Part II: Computational Fluid Dynamics Chapter 7: The Basic Equations of Fluid Dynamics 7.1 Introduction 7.2 Basic Conservation Principles 7.3 Unsteady Navier-Stokes Equations in Integral Form 7.4 Navier-Stokes Equations in Differential Form 7.4.1 Compressible Two-Dimensional Equations in Vector Form 7.4.2 Incompressible Navier-Stokes Equations in Cartesian Coordinates 7.4.3 Dimensionless Form of the Basic Equations 7.4.4 Incompressible Two-Dimensional Equations: Dimensionless Form 7.4.5 Observations on the Basic Equations 7.5 Boundary Conditions for Navier-Stokes Equations 7.6 Reynolds Averaged Navier-Stokes Equations 7.7 Boundary-layer, Thin-layer and Associated Approximations 7.8 Euler Equations for Inviscid Flows 7.8.1 Certain Observations on Euler and Navier-Stokes Equations 7.9 Boundary Conditions for Euler Equations 7.9.1 Far-field Boundary Conditions for Euler Equations 7.10 The Full Potential Equation 7.10.1 Potential Equation in Conservative Form 7.10.2 Boundary Conditions for the Full Potential Equation 7.10.3 Transonic Small Perturbation Model 7.10.4 Oswatitsch Reduction 7.10.5 Cole’s and Other Forms of the TSP Equation 7.11 Inviscid Incompressible Irrotational Flow 7.12 Summary 7.13 Key Terms Chapter 8: Grid Generation 8.1 Introduction 8.2 Co-ordinate Transformation 8.3 Differential Equation Methods 8.4 Algebraic Methods 8.4.1 Calculation of the Arc Length 8.4.2 Desired Arc Length Distribution 8.4.3 Calculation of the Angle θ on the Aerofoil and Cut 8.4.4 Calculation of ymin and nmax 8.4.5 Δn - Distribution on the Aerofoil and the Cut 8.4.6 Mesh Spacing in n-Direction 8.4.7 Calculation of x and y at Nodal Points 8.4.8 Cubic Spline 8.5 Transfinite Interpolation Methods 8.6 Unstructured Grid Generation 8.7 Mesh Adaptation 8.7.1 Moving Mesh 8.7.2 Mesh Enrichment 8.8 Summary 8.9 Key Terms 8.10 Exercise 8 Chapter 9: Inviscid Incompressible Flow 9.1 Introduction 9.2 Potential Flow Problem 9.3 Panel Methods 9.3.1 AMO Smith Method for a Lifting Airfoil 9.3.2 Influence Coefficients 9.4 Panel Methods (Continued) 9.4.1 Mathematical Preliminaries for Morino-Kuo Method 9.4.2 Flow Past an Aerofoil 9.4.3 A Constant-Potential Panel Method 9.4.4 Morino-Kuo Method 9.4.4.1 Pressure coefficient, forces, and moments 9.4.5 Program 9.1: Morinoprogram.c 9.4.6 Discretisation Error in Panel Methods 9.5 More on Panel Methods 9.6 Panel Methods for Subsonic and Supersonic Flows 9.7 Summary 9.8 Key Terms 9.9 Exercise 9 Chapter 10: Inviscid Compressible Flow 10.1 Introduction 10.1.1 Transonic Controversy 10.2 Small-perturbation Flow 10.2.1 Subsonic Flow Past a Thin Profile 10.2.2 Supersonic Small-Perturbation Flow 10.3 Numerical Solution of the Full Potential Equation 10.3.1 Rotated Difference Scheme 10.3.2 Conservative Schemes for the Potential Equation 10.4 Full Potential Solution in Generalised Coordinates 10.4.1 Spatial Differencing and Artificial Viscosity 10.4.2 AF2 Iteration Scheme 10.4.3 Boundary Conditions 10.4.4 Computational Results of Full-Potential Solution 10.5 Observations on the Full Potential Model 10.6 Euler Model 10.6.1 Governing Equations in Two Dimension 10.6.2 Numerical Methods for the Euler Model 10.6.3 Explicit and Implicit Schemes 10.6.4 Review of Acceleration Techniques 10.6.5 Finite Volume Discretisation 10.6.6 Artificial Dissipation 10.7 Boundary Conditions 10.7.1 Time Stepping Scheme 10.7.2 Acceleration Techniques 10.8 Computed Examples Based on the Euler Model 10.9 Supersonic Flow Field Computation 10.9.1 Examples of Supersonic Flow Computation 10.10 Summary 10.11 Key Terms 10.12 Exercise 10 Chapter 11: Boundary Layer Flow 11.1 Introduction 11.2 The Boundary Layer: Physical Considerations 11.2.1 Separation of the Boundary Layer from the Surface 11.2.2 Turbulence 1 1.2.3 Measures of Boundary Layer Thickness 11.3 The Boundary Layer Equations 1 1.3.1 Assumptions of the Boundary Layer Theory 11.3.2 The Boundary Layer Equations for Laminar Flow 1 1.3.2.1 Non-dimensionalisation of the governing equations 11.3.2.2 Order of magnitude analysis 11.3.2.3 Obtaining the laminar boundary layer equations 11.3.3 The Boundary Layer Equations for Turbulent Flow 11.3.4 Handling the Reynolds Stresses: Turbulence Modelling 11.3.5 Mathematical Nature of the Boundary Layer Equation (Boundary Conditions) 11.4 Computations of the Laminar Boundary Layer 11.4.1 Objectives 11.4.2 Similarity Transformation and the Falkner-Skan Equation 11.4.3 Laminar Boundary Layer on a Flat Plate 11.4.3.1 Solution by the “shooting method” 11.4.3.2 Displacement thickness and skin friction coefficient 11.4.3.3 What of the displacement effect? 11.4.4 Non-Similar Solutions of the Boundary Layer Equation 11.4.5 The Keller Box Scheme 11.5 Turbulent Boundary Layers 11.6 Summary 11.7 Key Terms 11.8 Exercise 11 Chapter 12: Viscous Incompressible Flow 12.1 Introduction 12.2 Incompressible Flow Computation 12.3 Stream-function Vorticity Approach 12.3.1 Pressure Poisson Equation 12.3.2 Boundary Conditions for Stream-Function and Vorticity 12.3.3 Method of Solution 12.4 Primitive Variables Approach 12.4.1 Discretisation Using Staggered Grid 12.5 The MAC Method 12.5.1 The Pressure Poisson Equation 12.5.2 Stability Restriction 12.5.3 Boundary Conditions in Primitive Variables 12.6 Solution Scheme 12.6.1 Variants of the MAC Method 12.6.2 Treatment of Convective Terms 12.7 Case Study: Separated Flow in a Constricted Channel 12.7.1 The Problem and Method of Solution 12.7.2 Boundary Conditions 12.7.3 Initial Condition 12.7.4 Co-ordinate Transformation 12.7.5 Numerical Solution 12.7.5.1 Type of grid used 12.7.6 Results and Discussion 12.7.6.1 Wall vorticity 12.7.6.2 Streamlines and vorticity contours 12.7.7 Conclusion: Case Study 12.8 Turbulent Flow 12.8.1 Physical Characteristics of Turbulent Flow 12.8.2 Incompressible Reynolds Averaged Navier-Stokes Equations 12.8.2.1 Properties of averaging 12.8.3 Closure Problem and Turbulence Modelling 12.8.4 Boussinesq Hypothesis 12.8.5 Eddy Viscosity Models 12.8.6 Zero-Equation Models 12.8.7 K-e Model 12.9 Summary 12.10 Key Terms 12.11 Exercise 12 Chapter 13: Viscous Compressible Flow 13.1 Introduction 13.2 Dynamic Similarity 13.3 RANS (Reynolds Averaged Compressible Navier-Stokes) Equations 13.4 Turbulence Modelling 13.4.1 Algebraic Turbulence Models 13.4.2 Other Models 13.5 Boundary Conditions 13.6 Basic Computational Methods for Compressible Flow 13.7 Finite Volume Computation in 2D 13.8 Solution Procedure 13.9 Computational Results 13.9.1 Flow Over a Flat Plate 13.9.2 Viscous Flow Past NACA0012 Aerofoil 13.9.3 Viscous Transonic Flow Past Other Aerofoils 13.9.4 Internal Flow Through Nozzle 13.9.5 Turbulent Flow Through Cascades 13.9.6 Viscous Flow Past Aerofoil-Flap Configuration 13.10 Summary 13.11 Key Terms 13.12 Exercise 13 Appendix A: Glossary A.l Glossary Appendix B: Ready-made Softwares for CFD B.l Introduction B.2 Software Packages for CFD B.2.1 Commercial CFD Codes B.2.2 Free/public domain/shareware CFD Codes Appendix C: Programs in the \'C\' Language C.l Program 3.1: ADI.C C.2 Program 4.1: LXMC.C C.3 Program 5.1: SOR.C C.4 Program 5.2: AFI.C C.5 Program 5.3: MGC.C C.6 Program 6.1: TSP.C Appendix D: Answers and Hints to Solutions D.1 Chapter 2 D.2 Chapter 3 D.3 Chapter 4 D.4 Chapter 5 D.5 Chapter 6 D.6 Chapter 10 D.7 Chapter 12 Bibliography Index