دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: متغیر پیچیده ویرایش: 2 نویسندگان: Lars Hormander سری: North-Holland mathematical library 7 ISBN (شابک) : 9780444105233, 0444105239 ناشر: Elsevier Science Ltd سال نشر: 1973 تعداد صفحات: 222 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب Introduction to complex analysis in several variables به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای برای تجزیه و تحلیل پیچیده در چندین متغیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تعدادی تک نگاری از جنبه های مختلف تحلیل پیچیده در چندین متغیر از زمان انتشار اولین نسخه این کتاب ظاهر شده است، اما هیچ یک از آنها از تکنیک های تحلیلی مبتنی بر حل مسئله نویمان به عنوان ابزار اصلی استفاده نمی کنند. اضافات ایجاد شده در این ویرایش سوم و تجدید نظر شده، تأکید بیشتری بر نتایجی که این روشها از اهمیت ویژهای برخوردار هستند، میکند. بنابراین، بخشی اضافه شده است که "اصل بنیادی" Ehrenpreis را به طور کامل ارائه می دهد. استدلال های محلی در این بخش ارتباط نزدیکی با اثبات انسجام سلسله میکروب های توابع ناپدید شده در یک مجموعه تحلیلی دارد. همچنین بحثی در مورد قضیه سیو در مورد اعداد للونگ توابع چند ساب هارمونی اضافه شده است. از آنجایی که تکنیکهای L2 در اثبات ضروری هستند و توابع پرهماهنگ نقش مهمی در این کتاب ایفا میکنند، طبیعی به نظر میرسد که در مورد تکینگیهای اصلی آنها بحث شود.
A number of monographs of various aspects of complex analysis in several variables have appeared since the first version of this book was published, but none of them uses the analytic techniques based on the solution of the Neumann Problem as the main tool. The additions made in this third, revised edition place additional stress on results where these methods are particularly important. Thus, a section has been added presenting Ehrenpreis' ``fundamental principle'' in full. The local arguments in this section are closely related to the proof of the coherence of the sheaf of germs of functions vanishing on an analytic set. Also added is a discussion of the theorem of Siu on the Lelong numbers of plurisubharmonic functions. Since the L2 techniques are essential in the proof and plurisubharmonic functions play such an important role in this book, it seems natural to discuss their main singularities.
Contents......Page 6
Preface......Page 3
List of Symbols......Page 8
1.1. Preliminaries......Page 10
1.2. Cauchy's integral formula and its applications......Page 11
1.3. The Runge approximation theorem......Page 15
1.4. The Mittag-Leffier theorem......Page 18
1.5. The Weierstrass theorem......Page 23
1.6. Subharmonic functions......Page 25
Notes......Page 30
2.1. Preliminaries......Page 31
2.2. Applications of Cauchy's integral formula in polydiscs......Page 34
2.3. The inhomogeneous Cauchy-Riemann equations in a polydisc......Page 39
2.4. Power series and Reinhardt domains......Page 43
2.5. Domains of holomorphy......Page 45
2.6. Pseudoconvexity and plurisubharmonicity......Page 53
2.7. Runge domains......Page 61
Notes......Page 68
3.1. Preliminaries......Page 70
3.2. Analytic functions of elements in a Banach algebra......Page 77
Notes......Page 84
4.1. Preliminaries......Page 86
4.2. Existence theorems in pseudoconvex domains......Page 91
4.3. Approximation theorems......Page 98
4.4. Existence theorems L^2 spaces......Page 101
4.5. Analytic functionals......Page 109
Notes......Page 114
5.1. Definitions......Page 116
5.2. L^2 estimates and existence theorems for the \d operator......Page 120
5.3. Embedding of Stein manifolds......Page 131
5.4. Envelopes of holomorphy......Page 139
5.5. The Cousin problems on a Stein manifold......Page 145
5.6. Existence and approximation theorems for sections of an analytic vector bundle......Page 148
5.7. Almost complex manifolds......Page 151
Notes......Page 155
6.1. The Weierstrass preparation theorem......Page 157
6.2. Factorization in the ring A_0 of germs of analytic functions......Page 160
6.3. Finitely generated A_0-modules......Page 163
6.4. The Oka theorem......Page 167
Notes......Page 169
Summary......Page 170
7.1. Definition of sheaves......Page 171
7;2. Existence of global sections of a coherent analytic sheaf......Page 176
7.3. Cohomology groups with values in a sheaf......Page 185
7.4. The cohomology groups of a Stein manifold with coefficients in a coherent analytic sheaf......Page 190
7.5. The de Rham theorem......Page 195
7.6. Cohomology with bounds and constant coefficient differential equations......Page 196
Notes......Page 215
Bibliography......Page 217
Index......Page 221