ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to Chemical Engineering

دانلود کتاب مقدمه ای بر مهندسی شیمی

Introduction to Chemical Engineering

مشخصات کتاب

Introduction to Chemical Engineering

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781119634089 
ناشر: Wiley & Sons 
سال نشر: 2024 
تعداد صفحات: 573
[574] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Introduction to Chemical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر مهندسی شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Introduction to Chemical Engineering
Copyright
Contents
Preface
Prologue
	1. A Typical Chemical Production System
		Introduction
		Chelates
		The Chemistry of the EDTA-Na4 Synthesis
		The Industrial Reaction to Produce EDTA-Na4
		The Conversion into EDTA
		The Chemical Plant
	2. Chemical Reactors and Unit Operations
	References
Part I. Transport Phenomena
	Part I: Content
	1. Mass Balances
		1.1 Introduction
		1.2 Theory
		1.3 Additional Material
		Reference
	2. Energy Balances
		2.1 Definitions
		2.2 The General Energy Balance
		2.3 Applications of the General Energy Balance
		2.3.1 Pump
		2.3.2 Air Oxidation of Cumene
		2.4 The Mechanical Energy Equation
		2.5 Applications of the Mechanical Energy Balance
		References
	3. Viscosity
		3.1 Definition
		3.2 Newtonian Fluids
		3.3 Non-Newtonian Fluids
		3.3.1 The Viscosity is a Function of the Temperature and the Shear Rate
		3.3.2 The Viscosity is a Function of Time
		3.4 Viscoelasticity
		3.5 Viscosity of Newtonian Fluids
		3.5.1 Gases
		3.5.2 Liquids
		References
	4. Laminar Flow
		4.1 Steady-state Flow Through a Circular Tube
		4.2 Rotational Viscosimeters
		4.3 Additional Remarks
	5. Turbulent Flow
		5.1 Velocity Distribution
		5.2 The Reynolds Number
		5.3 Pressure Drop in Horizontal Conduits
		5.4 Pressure Drop in Tube Systems
		5.5 Flow Around Obstacles
		5.5.1 Introduction
		5.5.2 Dispersed Spherical Particles
		5.6 Terminal Velocity of a Swarm of Particles
		5.7 Flow Resistance of Heat Exchangers with Tubes
		References
	6. Flow Meters
		6.1 Introduction
		6.2 Fluid-energy Activated Flow Meters
		6.2.1 Oval-gear Flow Meter
		6.2.2 Orifice Meter
		6.2.3 Venturi Meter
		6.2.4 Rotameter
		6.3 External Stimulus Flow Meters
		6.3.1 Thermal Flow Meter
		6.3.2 Ultrasonic Flow Meters
		References
	7. Case Studies Flow Phenomena
		7.1 Energy Consumption: Calculation of the Power Potential of a High Artificial Lake
		7.2 Estimation of the Size of a Pump Motor
	8. Heat Conduction
		8.1 Introduction
		8.2 Thermal Conductivity
		8.3 Steady-state Heat Conduction
		8.4 Heating or Cooling of a Solid Body
		References
	9. Convective Heat Transfer
		9.1 Heat Exchangers
		9.2 Heat Transfer Correlations
		References
	10. Heat Transfer by Radiation
		10.1 Introduction
		10.2 IR
		10.3 Dielectric Heating
		10.3.1 General Aspects
		10.3.2 RF Heating
		10.3.3 Microwave Heating
		References
	11. Case Studies Heat Transfer
		11.1 Bulk Materials Heat Exchanger
		11.2 Heat Exchanger
		11.3 Surface Temperature of the Sun
		11.4 Gas IR Textile Drying
		11.5 Heat Loss by IR Radiation
		11.6 Microwave Drying of a Pharmaceutical Product
		References
	12. Steady-state Diffusion
		12.1 Introduction and Definition of the Diffusion Coefficient
		12.2 The Diffusion Coefficient
		12.3 Steady-state Diffusion
		References
	13. Convective Mass Transfer
		13.1 Partial and Overall Mass Transfer Coefficients
		13.2 Mass Transfer Between a Fixed Wall and a Flowing Medium
		13.3 Simultaneous Heat and Mass Transfer at Convective Drying
		References
	14. Case Studies Mass Transfer
		14.1 Equimolar Diffusion
		14.2 Diffusion through a Stagnant Body
		14.3 Sublimation of a Naphthalene Sphere
		Reference
	Notation I
		Greek Symbols
Part II. Mixing and Stirring
	Part II: Content
	15. Introduction to Mixing and Stirrer Types
		References
	16. Mixing Time
		16.1 Introduction
		16.2 Approach of Beek et al.
		16.3 Approach of Zlokarnik
		References
	17. Power Consumption
		References
	18. Suspensions
		18.1 Introduction
		18.2 Power Consumption
		18.3 Further Work
		References
	19. Liquid/Liquid Dispersions
		Reference
	20. Gas Distribution
		20.1 Introduction
		20.2 Turbine
		20.3 Pitched-Blade Turbine Pumping Downward
		20.4 Turbine Scale Up
		20.5 Batch Air Oxidation of a Hydrocarbon
		20.6 Remark
		Appendix 20.1
		References
	21. Physical Gas Absorption
		21.1 Introduction
		21.2 kl a Measurements
		21.3 Power Consumption on Scaling Up
		21.4 Remarks
		References
	22. Heat Transfer in Stirred Vessels
		22.1 Introduction
		22.2 Heat Transfer Jacket Wall/Process Liquid
		22.3 Heat Transfer Coil Wall/Process Liquid
		22.4 Heat Transfer Jacket Medium/Vessel Wall
		22.5 Heat Transfer Coil Medium/Coil Wall
		22.6 Batch Heating and Cooling
		References
	23. Scale Up of Mixing
		23.1 Introduction
		23.2 Homogenization
		23.3 Suspensions
		23.4 Liquid/Liquid Dispersions
		23.5 Gas Distribution
		23.6 kl a
		23.7 Heat Transfer
		References
	24. Case Studies Mixing and Stirring
		24.1 Mixing Time—Comparison of Stirrers
		24.2 Mixing Time—Scale Up of Process
		24.3 Suspensions
		24.4 Air Oxidation Optimization
		24.5 Calculating kl a
		24.6 Heating Toluene in a Stirred Vessel
		24.7 Overall Heat Transfer Coefficient of a Jacketed Reactor
		24.8 Scale Up of Mixing
		References
		Notation II
		Greek Symbols
Part III. Chemical Reactors
	Part III: Content
	25. Chemical Reaction Engineering—An Introduction
		25.1 Fluidized Catalytic Cracking (FCC)
		25.2 Kinetic Rate Data and Transport Phenomena
		25.3 Reactor Types
		25.4 Batch Reactions Versus Continuous Reactions
		25.5 Adiabatic Temperature Rise
		25.6 Recycle
		25.7 Process Intensification
		References
	26. A Few Typical Chemical Reactors
		26.1 The Carbo-V-Process of Choren
		26.2 Coal Gasification
		26.3 Biofuels
		26.4 Pyrogenic Silica
		26.5 Microwaves
	27. The Order of a Reaction
		27.1 The Rate of a Reaction
		27.2 Introductory Remarks on the Order of a Reaction
		27.3 First-Order Reaction
		27.4 Second-Order Reactions
		References
	28. The Rate of Chemical Reactions as a Function of Temperature
		28.1 Arrhenius’ Law
		28.2 How to Influence Chemical Reaction Rates
		Reference
	29. Chemical Reaction Engineering—A Quantitative Approach
		29.1 Introduction
		29.2 Batch Reactor
		29.3 Plug Flow Reactor
		29.4 Continuous Stirred Tank Reactor (CSTR)
		29.5 Reactor Choice
		29.6 Staging
		29.7 Reversible Reactions
	30. A Plant Modification: From Batchwise to Continuous Manufacture
		30.1 Introduction
		30.2 Batchwise Production
		30.3 Continuous Manufacture
		Reference
	31. Intrinsic Continuous Process Safeguarding
		31.1 Summary
		31.2 Introduction
		31.3 The Production of Organic Peroxides
		31.4 Intrinsically Safe Processes
		31.5 Intrinsic Process Safeguarding
		31.6 Extrinsic Process Safeguarding
		31.7 Additional Remarks
		31.8 Practical Approach
		31.9 Examples
		References
	32. Reactor Choice and Scale Up
		32.1 Introduction
		32.2 Parallel Reactions
		32.3 Physical Effects
	33. Case Studies Chemical Reaction Engineering
		33.1 Order of a Reaction
		33.2 Chemical Reaction Rate as a Function of Temperature
		33.3 Reactor Size
		33.4 Reversible Reactions
		33.5 Competing Reactions
		33.6 The Hydrolysis of Acetic Acid Anhydride
		33.7 Cumene Air Oxidation
		References
		Notation III
		Greek Symbols
Part IV. Distillation
	Part IV: Content
	34. Continuous Distillation
		34.1 Introduction
		34.2 Vapor–Liquid Equilibrium
		34.3 The Fractionating Column
		34.4 The Number of Trays Required
		34.5 The Importance of the Reflux Ratio
		34.6 A Typical Continuous Industrial Distillation
		References
	35. Design of Continuous Distillation Columns
		35.1 Sieve Tray Columns
		35.2 Packed Columns
		Note
		References
	36. Various Types of Distillation
		36.1 Batch Distillation
		36.2 Azeotropic and Extractive Distillation
		36.3 Steam Distillation
		References
	37. Case Studies Distillation
		37.1 McCabe–Thiele Diagram
		37.2 Diameter of a Sieve Tray Column and Sieve Tray Pressure Loss
		37.3 The Distillation of Wine
		37.4 Steam Distillation
		Reference
		Notation IV
		Greek Symbols
Part V. Liquid Extraction
	Part V: Content
	38. Liquid Extraction – Part 1
		38.1 Introduction
		38.2 The Distribution Coefficient
		38.3 Calculation of the Number of Theoretical Stages in Extraction Operations
		References
	39. Liquid Extraction – Part 2
		39.1 Calculation of the Number of Transfer Units in Extraction Operations
		Reference
	40. Flooding
		40.1 General
		References
	41. The Two Liquids Exchanging a Component Are Partially Miscible
		41.1 Triangular Coordinates
		41.2 Formation of One Pair of Partially Miscible Liquids
		41.3 Continuous Countercurrent Multiple-contact Extraction
		References
	42. Case Studies Liquid Extraction
		42.1 A Series of Centrifugal Extractors
		42.2 Extraction by Means of An Ionic Liquid
		42.3 Overall Transfer Coefficient/Height of a Transfer Unit
		42.4 Calculation of the Column Height
		42.5 Two Partially Miscible Liquids Exchange a Component
		References
	Notation V
		Greek Symbols
Part VI. Absorption of Gases
	Part VI: Content
	43. Absorption of Gases
		43.1 Introduction
		43.2 Determination of the Number of Theoretical Stages at Absorption of Gases
		43.3 Estimation of the Diameter of an Absorption Column for Natural Gas
		43.4 The Absorption of Carbon Dioxide
		43.5 Design of Absorption Columns
		References
	Notation VI
		Greek Symbols
Part VII. Membranes
	Part VII: Content
	44. Membranes—An Introduction
		44.1 General
		44.2 Membranes
		44.3 Three Pressure-Driven Membrane Separation Processes for Aqueous Systems
		44.4 A Membrane Separation Process for Aqueous Solutions Which Is Driven by an Electrical Potential Difference
		44.5 Gas Separation
		44.6 Pervaporation
		44.7 Medical Applications
		44.8 Additional Remarks
		References
	45. Microfiltration
		45.1 Introduction
		45.2 Membrane Types
		45.3 Membrane Characterization
		45.4 Filter Construction
		45.5 Operational Practice
		References
	46. Ultrafiltration
		46.1 Introduction
		46.2 Membrane Characterization
		46.3 Concentration Polarization and Membrane Fouling
		46.4 Membrane Cleaning
		46.5 Ultrafiltration Membrane Systems
		46.6 Continuous Systems
		46.7 Applications
		References
	47. Reverse Osmosis
		47.1 Osmosis
		47.2 Reverse Osmosis
		47.3 Theoretical Background
		47.4 Concentration Polarization
		47.5 Membrane Specifications
		47.6 Membrane Qualities
		47.7 Reverse Osmosis Units
		47.8 Membrane Fouling Control and Cleaning
		47.9 Applications
		47.10 Nanofiltration Membranes
		47.11 Conclusions and Future Directions
		References
	48. Electrodialysis
		48.1 Introduction
		48.2 Functioning of Ion-Exchange Membranes
		48.3 Types of Ion Exchange Membranes
		48.4 Transport in Electrodialysis Membranes
		48.5 Power Consumption
		48.6 System Design
		48.7 Applications
		References
	49. Gas Separation
		49.1 Introduction
		49.2 Theoretical Background
		49.3 Process Design
		49.4 Applications
		References
	50. Case Studies Membranes
		50.1 Gel Formation
		50.2 Osmotic Pressure
		50.3 Membrane Gas Separation
		References
	Notation VII
		Greek Symbols
Part VIII. Crystallization, Liquid/Solid Separation, and Drying
	Part VIII: Content
	51. Crystallization
		51.1 Introduction
		51.2 Solubility
		51.3 Nucleation
		51.4 Crystal Growth
		51.5 Crystallizers and Crystallizer Operations
		51.6 The Population Density Balance
		51.7 Interpretation of the Results of Population Density Balances
		References
	52. Liquid/Solid separation
		52.1 Introduction
		52.2 Filtration
		52.2.1 Introduction
		52.2.2 Cake Filtration
		52.2.3 Filter Aids
		52.2.4 Deep-Bed Filtration
		52.2.5 Filtration Equipment
		52.3 Centrifugation
		Reference
	53. Convective Drying
		53.1 Introduction
		53.2 Four Important Continuous Convective Dryers in the Chemical Industry
		53.3 A First Example of Convective Drying
		53.4 The Adiabatic Saturation Temperature
		53.5 The Wet-Bulb Temperature
		53.6 The Mollier Diagram
		53.7 Drying Vacuum Pan Salt in a Plug Flow Fluid-Bed Dryer
	54. Design of a Flash Dryer
		54.1 Introduction
		54.2 Design
		Reference
	55. Contact Drying
		55.1 Introduction
		55.2 Scaling Up of a Conical Vacuum Dryer
		55.3 An Additional Remark Concerning Vacuum Drying
		55.4 Testing a Small Plate Dryer
		55.5 Testing a Continuous Paddle Dryer
		55.6 Scale Up of a Thin-Film Dryer
		Reference
	56. Case Studies Crystallization, Liquid/Solid Separation, and Drying
		56.1 Ultracentrifuges
		56.2 Le2/3
		56.3 Convective Drying-1
		56.4 Convective Drying-2
		56.5 Analysis of a Spray-Drying Operation
		56.6 Estimation of the Size of a Contact Dryer
		References
		Notation VIII
		Greek Symbols
Part IX. Gas/Solid Separation
	Part IX: Content
	57. Introduction
	58. Cyclones
		58.1 Introduction
		58.2 Sizing and Process Data
		References
	59. Fabric Filters
		59.1 Introduction
		59.2 Fabrics
		59.3 Baghouse Construction and Operation
		Reference
	60. Scrubbers
		60.1 Introduction
		60.2 Packed-Bed Scrubbers
		60.3 Venturi Scrubbers
		60.4 Mechanical Scrubbers
		References
	61. Electrostatic Precipitators
		61.1 Introduction
		61.2 Principle of Operation
		61.3 Process Data
		61.4 Construction
		Reference
	Notation IX
		Greek Symbols
Index




نظرات کاربران