ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to Biological Physics for the Health and Life Sciences

دانلود کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی

Introduction to Biological Physics for the Health and Life Sciences

مشخصات کتاب

Introduction to Biological Physics for the Health and Life Sciences

دسته بندی: بیوفیزیک
ویرایش: 2 
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 1118934482, 9781118934494 
ناشر: John Wiley & Sons 
سال نشر: 2019 
تعداد صفحات: 600 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 51,000



کلمات کلیدی مربوط به کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی: فیزیک



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Introduction to Biological Physics for the Health and Life Sciences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی

ویرایش دوم مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی


توضیحاتی درمورد کتاب به خارجی

2nd edition of Introduction to Biological Physics for the Health and Life Sciences



فهرست مطالب

Introduction to Biological Physics for the Health and Life Sciences
Contents
Preface
I Mechanics
	Chapter 1 Kinematics
		1.1 Introduction
		1.2 Distance and Displacement
		1.3 Speed and Velocity
		1.4 Acceleration
		1.5 Average Velocity or Speed
		1.6 Change in Displacement Under Constant Acceleration
			An Expression Independent of Time
		1.7 The Acceleration Due to Gravity
		1.8 Independence of Motion in Two Dimensions
		1.9 Summary
		1.10 Problems
	Chapter 2 Force and Newton’s Laws of Motion
		2.1 Introduction
		2.2 The Concept of Force
			Newton’s First Law
			Newton’s Second Law
			Weight and Mass
			Forces Are Vectors
			Newton’s Third Law
		2.3 Kinds of Force
			The Fundamental Forces
			Derived Forces
			Tension
			The Normal Force and Friction
			Drag Forces
		2.4 Newtonian Gravity
		2.5 Fictitious Forces
		2.6 Summary
		2.7 Problems
	Chapter 3 Motion in a Circle
		3.1 Introduction
		3.2 Description of Circular Motion
			Angular Displacement and Radians
			Angular Velocity
		3.3 Circular Velocity and Acceleration
		3.4 Centripetal Force
		3.5 Sources of Centripetal Force
		3.6 Summary
		3.7 Problems
	Chapter 4 Statics
		4.1 Introduction
		4.2 Equilibrium
		4.3 Torque
		4.4 The Principle of Moments
		4.5 Centre of Gravity/Centre of Mass
		4.6 Stability
		4.7 Summary
		4.8 Problems
	Chapter 5 Energy
		5.1 Introduction
		5.2 What is Energy?
		5.3 Work
		5.4 Kinetic Energy
		5.5 Potential Energy
			Gravitational Potential Energy
		5.6 Conservative Forces
		5.7 Conservation of Total Energy
		5.8 Power
			Mechanical Efficiency
		5.9 Summary
		5.10 Problems
	Chapter 6 Momentum
		6.1 Introduction
		6.2 Linear Momentum
		6.3 Newton’s Laws and Momentum
		6.4 Collisions
		6.5 Elastic Collisions
		6.6 Summary
		6.7 Problems
	Chapter 7 Simple Harmonic Motion
		7.1 Introduction
		7.2 Hooke’s Law
			Energy in Hooke’s Law Deformations
		7.3 Simple Harmonic Motion
			The Relationship Between Circular Motion and SHM
			Maximum Velocity in SHM
			Period and Frequency of SHM
		7.4 The Simple Pendulum
		7.5 Summary
		7.6 Problems
	Chapter 8 Waves
		8.1 Introduction
		8.2 SHM and Waves
		8.3 Frequency, Wavelength, and Speed
		8.4 The Form of the Wave
		8.5 Types of Wave
			Transverse Waves
			Longitudinal Waves
		8.6 Superposition and Interference
		8.7 Beats
		8.8 Reflection
		8.9 Standing Waves
		8.10 Waves and Energy
			Power and Intensity
		8.11 Complex Waveforms
			Musical (and Vocal) Tone
		8.12 Summary
		8.13 Problems
	Chapter 9 Sound and Hearing
		9.1 Introduction
		9.2 Sound Waves in Media
			Pressure Waves in Gases
			Waves in Solids and Liquids
			Wave Speed
			Acoustic Impedance
		9.3 Pitch and Loudness
			Frequency and Pitch
			Amplitude and Intensity
			Intensity, Loudness and the Decibel Scale
		9.4 Resonance and Sound Generation
			Modes of Vibration of a String
			Modes of Vibration of an Open Pipe
			Modes of Vibration of a Half-Open Pipe
			Complex Waveforms
			The Human Vocal Organs
		9.5 The Ear
			Anatomy
			Effects of Resonance in the Ear Canal
			The Ear and the Problem of Impedance
		9.6 The Doppler Effect
			Moving Source, Fixed Observer
			Fixed Source, Moving Observer
		9.7 Summary
		9.8 Problems
II Solids and Fluids
	Chapter 10 Elasticity: Stress and Strain
		10.1 Introduction
		10.2 Tension and Compression
			Stress and Strain
			Tensile Stress and Strain
			Compressive Stress and Strain
		10.3 Shear Stress and Strain
		10.4 Bulk Stress and Strain
		10.5 Elasticity
			Stress–Strain Curves
			Change in Cross-Sectional Area
		10.6 Summary
		10.7 Problems
	Chapter 11 Pressure
		11.1 Introduction
		11.2 Pressure
			Solids
			Gases
			Liquids
		11.3 Density
		11.4 Pascal’s Principle
		11.5 Measurement of Pressure
			The Manometer
			The Barometer
			Gauge Pressure
			Absolute Pressure
			Units
		11.6 Pressure and the Human Body
			Blood Pressure
		11.7 Summary
		11.8 Problems
	Chapter 12 Buoyancy
		12.1 Introduction
		12.2 The Buoyant Force
			Archimedes’ Principle
		12.3 Summary
		12.4 Problems
	Chapter 13 Surface Tension and Capillarity
		13.1 Introduction
		13.2 Surface Tension
			Pressure in Bubbles
			Surfactants
		13.3 Capillarity
			Interfacial Tension
			Capillary Action
		13.4 Surfactants and the Lung
		13.5 Summary
		13.6 Problems
	Chapter 14 Fluid Dynamics of Non-viscous Fluids
		14.1 Introduction
		14.2 Definitions of Some Key Terms
		14.3 The Equation of Continuity
			Volume Flow Rate
			Continuity of Flow
		14.4 Bernoulli’s Equation
			Bernoulli’s Principle and Incompressible Fluid Flow
			Energy Density
			Pressure and Velocity
			Applications of Bernoulli’s Equation
		14.5 Summary
		14.6 Problems
	Chapter 15 Fluid Dynamics of Viscous Fluids
		15.1 Introduction
		15.2 Viscosity
			Poiseuille’s Law
			Blood Viscosity
		15.3 Turbulence
		15.4 Summary
		15.5 Problems
	Chapter 16 Molecular Transport Phenomena
		16.1 Introduction
		16.2 Diffusion
			Fick’s Law
			Relationship to Other Transport Processes
		16.3 Osmosis
			Osmotic Pressure
		16.4 Applications to Biological Systems
			Diffusion and the Lung
			Contact Lenses and Diffusion
		16.5 Summary
		16.6 Problems
III Thermodynamics
	Chapter 17 Temperature and the Zeroth Law
		17.1 Introduction
		17.2 Thermal Equilibrium
			Defining Temperature
			Thermal Energy, Equilibrium and Heat
			Temperature Scales
		17.3 Measuring Temperature
			The Thermometer
			The Constant-Volume Gas Thermometer
			Secondary Temperature Measurements
			Temperature and the Human Body
		17.4 Thermal Expansion of Materials
			Linear Expansion
			Expansion in Two and Three Dimensions
			Examples of Thermal Expansion
			Anomalous Thermal Expansion of Water
		17.5 Summary
		17.6 Problems
	Chapter 18 Ideal Gases
		18.1 Introduction
		18.2 The Gas Laws
			Charles’ Law
			Boyle’s Law
			The Ideal Gas Law
			Dalton’s Law of Partial Pressures
		18.3 Biological Applications
			Breathing
			Tension Pneumothorax
			Diving
		18.4 Kinetic Theory of Gases
			Energy of an Ideal Gas
			The Maxwell–Boltzmann Distribution
		18.5 Summary
		18.6 Problems
	Chapter 19 Phase and Temperature Change
		19.1 Introduction
		19.2 Phase Changes
			Real Gases
			States of Matter
			Phase Diagrams
			Phase Changes and Latent Heat
		19.3 Temperature Changes
			Heat and Temperature
			Specific Heat
		19.4 Energy Conservation
			The Simple Case – No Phase Change
			Thermal Equilibrium With Phase Change
		19.5 L and c Values for Water
		19.6 Summary
		19.7 Problems
	Chapter 20 Water Vapour and the Atmosphere
		20.1 Introduction
		20.2 Mixtures of Water Vapour and Air
			Dalton’s Law
			Water Vapour in the Air
		20.3 Partial Pressure and Moisture Content
		20.4 Atmospheric Properties
			Dry-Bulb Temperature
			The Dew-Point Temperature
			Wet-Bulb Temperature
			Humidity, Moisture Content, and Partial Pressure
		20.5 Psychrometry
			Background
			Psychrometric Charts
		20.6 Applications
			Medical Equipment: Humidification and Ventilators
			Combined Temperature Measures
		20.7 Summary
		20.8 Problems
	Chapter 21 Heat Transfer
		21.1 Introduction
		21.2 Conduction
			Heat Transfer by Conduction
			Coefficients of Heat Transfer
			Conduction Through Multiple Layers
		21.3 Convection
		21.4 Radiation
			The Stefan–Boltzmann Law
			Emissivity Values
			Colour and Temperature
		21.5 Combined Transfer Processes
		21.6 Summary
		21.7 Problems
	Chapter 22 Thermodynamics and the Body
		22.1 Introduction
		22.2 The First Law
		22.3 Energy and the Body
			Metabolism, Hypothermia, and Hyperthermia
			Energy Value of Food
			Efficiency
		22.4 Thermoregulation
			Heat Sensors
			Vasoconstriction and Vasodilation
			Piloerection and Shivering
			Perspiration
			Behavioural Responses
			Extreme Conditions: Wind-chill
		22.5 Temperature and Health
			Factors Affecting Comfort Level
			Adverse Effects of Temperature
		22.6 Summary
		22.7 Problems
	Chapter 23 Thermodynamic Processes in Ideal Gases
		23.1 Introduction
		23.2 States, Processes, and Equilibrium
			State Variables
			Process Variables
		23.3 Reversibility
			Quasistatic Processes
			Reversible Processes
		23.4 Work and P–V Diagrams
		23.5 Isobaric, Isochoric, Isothermal, and Adiabatic Processes
			Isobaric Processes
			Isochoric Processes
			Isothermal Processes
			Adiabatic Processes
			Free Expansion of a Gas
			Summary of Processes in Ideal Gas
		23.6 Summary
		23.7 Problems
	Chapter 24 Heat Engines And Entropy
		24.1 Introduction
		24.2 The Second Law of Thermodynamics
		24.3 Entropy
			Entropy Change and Spontaneity
			Properties of Entropy
		24.4 Cyclic Processes and Heat Engines
			The Carnot Cycle
			Heat Engine Efficiency
		24.5 The First Law for Reversible Processes
		24.6 T–S Diagrams for Heat Engines
		24.7 Entropy and Irreversible Processes
			Entropy Change, Irreversibility, and Work
			Entropy Change in Free Expansion of a Gas
		24.8 Absolute Entropy And The Third Law of Thermodynamics
		24.9 Summary
		24.10 Problems
	Chapter 25 Energy Availability and Thermodynamic Potentials
		25.1 Introduction
		25.2 Enthalpy
			Enthalpy and Reactions
			Enthalpy and Ideal Gases
		25.3 Helmholtz Energy
		25.4 Gibbs Energy
		25.5 Chemical Work and the Chemical Potential
		25.6 Thermodynamic Potentials and Equilibrium
			Thermodynamic Equilbirium
			Potentials and Equilibrium
		25.7 Heat Engines and the Efficiency of Metabolism
		25.8 Summary
		25.9 Problems
IV Electricity and DC Circuits
	Chapter 26 Static Electricity
		26.1 Introduction
		26.2 Charge
		26.3 Conductors and Insulators
		26.4 Charging of Objects
		26.5 Polarisation
		26.6 Summary
		26.7 Problems
	Chapter 27 Electric Force and Electric Field
		27.1 Introduction
		27.2 Coulomb’s Law
		27.3 Superposition of Electric Forces
		27.4 Inverse Square Laws
		27.5 The Electric Field
		27.6 Electric Field Diagrams
		27.7 Superposition of Electric Fields
		27.8 Summary
		27.9 Problems
	Chapter 28 Electrical Potential and Energy
		28.1 Introduction
		28.2 Electrical Potential Energy
		28.3 Electrical Potential
		28.4 Electrical Potential and Work
		28.5 Equipotential and Field Lines
		28.6 Electrical and External Forces
			Positive Charge, No External Force
			Positive Charge, External Force
			Negative Charge, External Force
			Charge Moving Perpendicular to the Field Direction
		28.7 The Heart and ECG
		28.8 Summary
		28.9 Problems
	Chapter 29 Capacitance
		29.1 Introduction
		29.2 The Capacitor
		29.3 Energy Stored in a Capacitor
		29.4 Capacitors in Series and Parallel
		29.5 The Dielectric in a Capacitor
		29.6 Summary
		29.7 Problems
	Chapter 30 Direct Currents and DC Circuits
		30.1 Introduction
		30.2 Electric Current
		30.3 Current and Drift Velocity
		30.4 Direct Versus Alternating Current
		30.5 Circuits and Circuit Diagrams
		30.6 Power Sources
		30.7 Resistance and Ohm’s Law
		30.8 Resistors and Resistivity
		30.9 Wires
		30.10 Kirchhoff’s Laws
			Kirchhoff’s Law of Voltages
			Kirchhoff’s Law of Currents
		30.11 Resistors in Series and Parallel
			Resistors in Series
			Resistors in Parallel
		30.12 Power Dissipation
		30.13 Alternate Energy Units
		30.14 Electric Shock Hazards
		30.15 Electricity in Cells
			Cell Membranes
			Circuit Models of the Cell and The Cell Membrane
		30.16 Summary
		30.17 Problems
	Chapter 31 Time Behaviour of RC Circuits
		31.1 Introduction
		31.2 The RC Circuit
		31.3 Discharging RC Circuit
		31.4 Charging RC Circuit
		31.5 Summary
		31.6 Problems
V Optics
	Chapter 32 The Nature of Light
		32.1 Introduction
		32.2 Electromagnetic Waves
			The Constant Speed of Light
			Wavelength and Frequency
			The Electromagnetic Spectrum
		32.3 Reflection
		32.4 Refraction
			Snell’s Law
			Total Internal Reflection
		32.5 Dispersion
			Examples of Dispersion
		32.6 Summary
		32.7 Problems
	Chapter 33 Geometric Optics
		33.1 Introduction
		33.2 Ray Diagrams
		33.3 Plane Mirrors
		33.4 Spherical Mirrors
			Concave and Convex Mirrors
			Image Formation By a Concave Mirror
			Image Formation By a Convex Mirror
			Types of Image—Real and Virtual
			The Mirror Equation
		33.5 Magnification
		33.6 Lenses
			Image Formation By Lenses
			Image Formation by a Converging Lens
			Image Formation by a Diverging Lens
			Sign Convention for Lenses
			Magnification and Lens Power
		33.7 Summary
		33.8 Problems
	Chapter 34 The Eye and Vision
		34.1 Introduction
		34.2 The Parts of the Eye
		34.3 Emmetropia (Normal Vision)
		34.4 Presbyopia
		34.5 Myopia
		34.6 Hypermetropia (or Hyperopia)
		34.7 Astigmatism
		34.8 Alternative Structure and Placement
			Focussing Ability
			Eye Placement and Field of Vision
		34.9 Colour Vision
			Detector Types
			Colour Science
		34.10 Summary
		34.11 Problems
	Chapter 35 Wave Optics
		35.1 Introduction
		35.2 Superposition and Interference
		35.3 Huygens’ Principle
			Refraction Revisited: Proof of Snell’s Law
		35.4 Diffraction
		35.5 Young’s Double-Slit Experiment
		35.6 Single-Slit Diffraction
		35.7 Diffraction Gratings
		35.8 Circular Apertures and Diffraction
			The Airy Pattern
			The Rayleigh Criterion and Resolution
		35.9 Visual Acuity
		35.10 Thin-Film Interference
		35.11 Polarisation
			Polarisation By Reflection
			Polarised Light Detection By The Eye
		35.12 Summary
		35.13 Problems
	Chapter 36 Advanced Geometric Optics
		36.1 Introduction
		36.2 Image Formation by Reflection at a Spherical Surface
			Convex mirror
			Concave Mirror
			Focal Points and Sign Conventions
		36.3 Image Formation by a Refraction at a Single Spherical Surface
			Convex Surface, Low Refractive Index to High
			Concave Surface, Low Refractive Index to High
			Sign Conventions
			Focal Points and Power of a Single Spherical Surface
		36.4 Image Formation by a Thin Lens
		36.5 Vergences
			Magnification
		36.6 Multiple Lenses and Thick Lenses
		36.7 Summary
		36.8 Problems
	Chapter 37 Optical Instruments
		37.1 Introduction
		37.2 Single Converging Lens: The Magnifying Glass
		37.3 Microscopes
			The Compound Microscope
			The Fixed Tube Length Laboratory Microscope
			Infinity-Corrected Microscopes
		37.4 Telescopes
			The Galilean Telescope
			The Keplerian Telescope
		37.5 Summary
		37.6 Problems
VI Radiation and Health
	Chapter 38 Atoms and Atomic Physics
		38.1 Introduction
		38.2 Parts of the Atom
		38.3 Electron Orbitals
			Electrons
			Orbitals and Energy Levels
			Emission and Absorption Spectra
		38.4 The Böhr Model of the Atom
			Circular Orbits and Quantisation
			de Broglie and Waves
		38.5 Multielectron Atoms
		38.6 Quantum Mechanics
		38.7 Summary
		38.8 Problems
	Chapter 39 The Nucleus and Nuclear Physics
		39.1 Introduction
		39.2 Nuclei and Isotopes
			Protons and Neutrons
			Atomic Number
			Atomic Mass Number
			Symbols and Terminology
		39.3 Energy and Mass Units
			Equivalence of Mass and Energy
			The Electron Volt
			The Unified Atomic Mass Unit
			Mass in ‘MeV’
		39.4 Nuclear Forces
			The Strong Force and the Nucleus
			The Weak Nuclear Force
		39.5 Nuclear Decay and Stability
			Binding Energy
			The Liquid Drop Model
			The Nuclear Stability Chart
			Fission
			Fusion
		39.6 Summary
		39.7 Problems
	Chapter 40 Production of Ionising Radiation
		40.1 Introduction
		40.2 Nuclear Decay Processes
			Alpha Decay
			Beta Decay
			Gamma Decay
		40.3 Activity and Half-Life
			Activity
			Half-Life
			Most Likely Decay Mode and Examples of Decay Series
		40.4 X-ray Production
			Characteristic Radiation
			Bremsstrahlung
			X-ray Tubes
		40.5 Other Sources of Radiation
			Pair Annihilation
			Cosmic Rays
		40.6 Summary
		40.7 Problems
	Chapter 41 Interactions of Ionising Radiation
		41.1 Introduction
		41.2 Attenuation and Cross Section
		41.3 X-rays and Gamma Radiation
			The Photoelectric Effect
			Pair Production
			The Compton Effect
		41.4 Particles
			Neutrons
			Ions
			Electrons/Positrons
		41.5 Detection of Ionising Radiation
			The Geiger–Müller Tube
			The Photomultiplier
			Photographic Emulsions
		41.6 Summary
		41.7 Problems
	Chapter 42 Biological Effects of Ionising Radiation
		42.1 Introduction
		42.2 Mechanisms of Cell Damage
		42.3 Dose and Dose Equivalent
			Absorbed Dose
			Dose Equivalent
			Effective Dose
		42.4 Types of Effect
		42.5 Medical Effects and Risk
		42.6 Ultraviolet Radiation
		42.7 Summary
		42.8 Problems
	Chapter 43 Medical Imaging
		43.1 Introduction
		43.2 X-ray Imaging
		43.3 CT Scan
		43.4 PET scan
		43.5 Gamma Camera and SPECT
		43.6 Diagnostic Procedures: Dose
		43.7 Ultrasound Sonography
		43.8 Summary
	Chapter 44 Magnetism and MRI
		44.1 Introduction
		44.2 Magnetism
			The Magnetic Force and Field
			Magnetic Field Examples
			Force on Charges in a Magnetic Field
			Induced Currents: Faraday’s Law and Lenz’s Law
			Types of Magnetic Materials
		44.3 A Brief Outline of MRI
		44.4 Nuclear Magnetic Resonance
			Angular Momentum, Rotation and Precession
			Classical Picture Versus Quantum Mechanics
			Interaction of Nuclei With Static Magnetic Fields
			Interaction of Nuclei With a Resonant Electromagnetic Field
			Relaxation Processes and Times
		44.5 Magnetic Resonance Imaging
			Free Induction Decay
			Spin Echo Pulse Sequence
			T1 and T2 in MRI
			Spatial Information
			Magnetic Resonance Spectroscopy
			Contrast Agents
			Functional MRI
			Instrumentation
			Safety
		44.6 Summary
		44.7 Problems
Appendices
	Appendix A Physical Constants
		A.1 High Precision Mass Values
		A.2 Useful Constants
	Appendix B Basic Maths and Science Skills
		B.1 Measurement and Units
			Units
			Unit Conversion
			Accuracy, Uncertainty, and Significant Figures
		B.2 Basic Algebra
			Working With Equations
			Problem Areas
		B.3 Exponentials and Logarithms
			Scientific Notation
			Logarithms
		B.4 Geometry
		B.5 Trigonometric Functions
			Basic Definitions
			Some Important Identities
			Common Angles
		B.6 Vectors
			Addition and Subtraction of Vectors
			Multiplication of a Vector by a Scalar
	Appendix C Answers To Odd Numbered Problems
Selected Further Reading
Index
EULA




نظرات کاربران