دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: 2 نویسندگان: Kirsten Franklin, Paul Muir, Terry Scott, Lara Wilcocks, Paul Yates سری: ISBN (شابک) : 1118934482, 9781118934494 ناشر: John Wiley & Sons سال نشر: 2019 تعداد صفحات: 600 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
کلمات کلیدی مربوط به کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی: فیزیک
در صورت تبدیل فایل کتاب Introduction to Biological Physics for the Health and Life Sciences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش دوم مقدمه ای بر فیزیک بیولوژیکی برای علوم بهداشت و زندگی
2nd edition of Introduction to Biological Physics for the Health and Life Sciences
Introduction to Biological Physics for the Health and Life Sciences Contents Preface I Mechanics Chapter 1 Kinematics 1.1 Introduction 1.2 Distance and Displacement 1.3 Speed and Velocity 1.4 Acceleration 1.5 Average Velocity or Speed 1.6 Change in Displacement Under Constant Acceleration An Expression Independent of Time 1.7 The Acceleration Due to Gravity 1.8 Independence of Motion in Two Dimensions 1.9 Summary 1.10 Problems Chapter 2 Force and Newton’s Laws of Motion 2.1 Introduction 2.2 The Concept of Force Newton’s First Law Newton’s Second Law Weight and Mass Forces Are Vectors Newton’s Third Law 2.3 Kinds of Force The Fundamental Forces Derived Forces Tension The Normal Force and Friction Drag Forces 2.4 Newtonian Gravity 2.5 Fictitious Forces 2.6 Summary 2.7 Problems Chapter 3 Motion in a Circle 3.1 Introduction 3.2 Description of Circular Motion Angular Displacement and Radians Angular Velocity 3.3 Circular Velocity and Acceleration 3.4 Centripetal Force 3.5 Sources of Centripetal Force 3.6 Summary 3.7 Problems Chapter 4 Statics 4.1 Introduction 4.2 Equilibrium 4.3 Torque 4.4 The Principle of Moments 4.5 Centre of Gravity/Centre of Mass 4.6 Stability 4.7 Summary 4.8 Problems Chapter 5 Energy 5.1 Introduction 5.2 What is Energy? 5.3 Work 5.4 Kinetic Energy 5.5 Potential Energy Gravitational Potential Energy 5.6 Conservative Forces 5.7 Conservation of Total Energy 5.8 Power Mechanical Efficiency 5.9 Summary 5.10 Problems Chapter 6 Momentum 6.1 Introduction 6.2 Linear Momentum 6.3 Newton’s Laws and Momentum 6.4 Collisions 6.5 Elastic Collisions 6.6 Summary 6.7 Problems Chapter 7 Simple Harmonic Motion 7.1 Introduction 7.2 Hooke’s Law Energy in Hooke’s Law Deformations 7.3 Simple Harmonic Motion The Relationship Between Circular Motion and SHM Maximum Velocity in SHM Period and Frequency of SHM 7.4 The Simple Pendulum 7.5 Summary 7.6 Problems Chapter 8 Waves 8.1 Introduction 8.2 SHM and Waves 8.3 Frequency, Wavelength, and Speed 8.4 The Form of the Wave 8.5 Types of Wave Transverse Waves Longitudinal Waves 8.6 Superposition and Interference 8.7 Beats 8.8 Reflection 8.9 Standing Waves 8.10 Waves and Energy Power and Intensity 8.11 Complex Waveforms Musical (and Vocal) Tone 8.12 Summary 8.13 Problems Chapter 9 Sound and Hearing 9.1 Introduction 9.2 Sound Waves in Media Pressure Waves in Gases Waves in Solids and Liquids Wave Speed Acoustic Impedance 9.3 Pitch and Loudness Frequency and Pitch Amplitude and Intensity Intensity, Loudness and the Decibel Scale 9.4 Resonance and Sound Generation Modes of Vibration of a String Modes of Vibration of an Open Pipe Modes of Vibration of a Half-Open Pipe Complex Waveforms The Human Vocal Organs 9.5 The Ear Anatomy Effects of Resonance in the Ear Canal The Ear and the Problem of Impedance 9.6 The Doppler Effect Moving Source, Fixed Observer Fixed Source, Moving Observer 9.7 Summary 9.8 Problems II Solids and Fluids Chapter 10 Elasticity: Stress and Strain 10.1 Introduction 10.2 Tension and Compression Stress and Strain Tensile Stress and Strain Compressive Stress and Strain 10.3 Shear Stress and Strain 10.4 Bulk Stress and Strain 10.5 Elasticity Stress–Strain Curves Change in Cross-Sectional Area 10.6 Summary 10.7 Problems Chapter 11 Pressure 11.1 Introduction 11.2 Pressure Solids Gases Liquids 11.3 Density 11.4 Pascal’s Principle 11.5 Measurement of Pressure The Manometer The Barometer Gauge Pressure Absolute Pressure Units 11.6 Pressure and the Human Body Blood Pressure 11.7 Summary 11.8 Problems Chapter 12 Buoyancy 12.1 Introduction 12.2 The Buoyant Force Archimedes’ Principle 12.3 Summary 12.4 Problems Chapter 13 Surface Tension and Capillarity 13.1 Introduction 13.2 Surface Tension Pressure in Bubbles Surfactants 13.3 Capillarity Interfacial Tension Capillary Action 13.4 Surfactants and the Lung 13.5 Summary 13.6 Problems Chapter 14 Fluid Dynamics of Non-viscous Fluids 14.1 Introduction 14.2 Definitions of Some Key Terms 14.3 The Equation of Continuity Volume Flow Rate Continuity of Flow 14.4 Bernoulli’s Equation Bernoulli’s Principle and Incompressible Fluid Flow Energy Density Pressure and Velocity Applications of Bernoulli’s Equation 14.5 Summary 14.6 Problems Chapter 15 Fluid Dynamics of Viscous Fluids 15.1 Introduction 15.2 Viscosity Poiseuille’s Law Blood Viscosity 15.3 Turbulence 15.4 Summary 15.5 Problems Chapter 16 Molecular Transport Phenomena 16.1 Introduction 16.2 Diffusion Fick’s Law Relationship to Other Transport Processes 16.3 Osmosis Osmotic Pressure 16.4 Applications to Biological Systems Diffusion and the Lung Contact Lenses and Diffusion 16.5 Summary 16.6 Problems III Thermodynamics Chapter 17 Temperature and the Zeroth Law 17.1 Introduction 17.2 Thermal Equilibrium Defining Temperature Thermal Energy, Equilibrium and Heat Temperature Scales 17.3 Measuring Temperature The Thermometer The Constant-Volume Gas Thermometer Secondary Temperature Measurements Temperature and the Human Body 17.4 Thermal Expansion of Materials Linear Expansion Expansion in Two and Three Dimensions Examples of Thermal Expansion Anomalous Thermal Expansion of Water 17.5 Summary 17.6 Problems Chapter 18 Ideal Gases 18.1 Introduction 18.2 The Gas Laws Charles’ Law Boyle’s Law The Ideal Gas Law Dalton’s Law of Partial Pressures 18.3 Biological Applications Breathing Tension Pneumothorax Diving 18.4 Kinetic Theory of Gases Energy of an Ideal Gas The Maxwell–Boltzmann Distribution 18.5 Summary 18.6 Problems Chapter 19 Phase and Temperature Change 19.1 Introduction 19.2 Phase Changes Real Gases States of Matter Phase Diagrams Phase Changes and Latent Heat 19.3 Temperature Changes Heat and Temperature Specific Heat 19.4 Energy Conservation The Simple Case – No Phase Change Thermal Equilibrium With Phase Change 19.5 L and c Values for Water 19.6 Summary 19.7 Problems Chapter 20 Water Vapour and the Atmosphere 20.1 Introduction 20.2 Mixtures of Water Vapour and Air Dalton’s Law Water Vapour in the Air 20.3 Partial Pressure and Moisture Content 20.4 Atmospheric Properties Dry-Bulb Temperature The Dew-Point Temperature Wet-Bulb Temperature Humidity, Moisture Content, and Partial Pressure 20.5 Psychrometry Background Psychrometric Charts 20.6 Applications Medical Equipment: Humidification and Ventilators Combined Temperature Measures 20.7 Summary 20.8 Problems Chapter 21 Heat Transfer 21.1 Introduction 21.2 Conduction Heat Transfer by Conduction Coefficients of Heat Transfer Conduction Through Multiple Layers 21.3 Convection 21.4 Radiation The Stefan–Boltzmann Law Emissivity Values Colour and Temperature 21.5 Combined Transfer Processes 21.6 Summary 21.7 Problems Chapter 22 Thermodynamics and the Body 22.1 Introduction 22.2 The First Law 22.3 Energy and the Body Metabolism, Hypothermia, and Hyperthermia Energy Value of Food Efficiency 22.4 Thermoregulation Heat Sensors Vasoconstriction and Vasodilation Piloerection and Shivering Perspiration Behavioural Responses Extreme Conditions: Wind-chill 22.5 Temperature and Health Factors Affecting Comfort Level Adverse Effects of Temperature 22.6 Summary 22.7 Problems Chapter 23 Thermodynamic Processes in Ideal Gases 23.1 Introduction 23.2 States, Processes, and Equilibrium State Variables Process Variables 23.3 Reversibility Quasistatic Processes Reversible Processes 23.4 Work and P–V Diagrams 23.5 Isobaric, Isochoric, Isothermal, and Adiabatic Processes Isobaric Processes Isochoric Processes Isothermal Processes Adiabatic Processes Free Expansion of a Gas Summary of Processes in Ideal Gas 23.6 Summary 23.7 Problems Chapter 24 Heat Engines And Entropy 24.1 Introduction 24.2 The Second Law of Thermodynamics 24.3 Entropy Entropy Change and Spontaneity Properties of Entropy 24.4 Cyclic Processes and Heat Engines The Carnot Cycle Heat Engine Efficiency 24.5 The First Law for Reversible Processes 24.6 T–S Diagrams for Heat Engines 24.7 Entropy and Irreversible Processes Entropy Change, Irreversibility, and Work Entropy Change in Free Expansion of a Gas 24.8 Absolute Entropy And The Third Law of Thermodynamics 24.9 Summary 24.10 Problems Chapter 25 Energy Availability and Thermodynamic Potentials 25.1 Introduction 25.2 Enthalpy Enthalpy and Reactions Enthalpy and Ideal Gases 25.3 Helmholtz Energy 25.4 Gibbs Energy 25.5 Chemical Work and the Chemical Potential 25.6 Thermodynamic Potentials and Equilibrium Thermodynamic Equilbirium Potentials and Equilibrium 25.7 Heat Engines and the Efficiency of Metabolism 25.8 Summary 25.9 Problems IV Electricity and DC Circuits Chapter 26 Static Electricity 26.1 Introduction 26.2 Charge 26.3 Conductors and Insulators 26.4 Charging of Objects 26.5 Polarisation 26.6 Summary 26.7 Problems Chapter 27 Electric Force and Electric Field 27.1 Introduction 27.2 Coulomb’s Law 27.3 Superposition of Electric Forces 27.4 Inverse Square Laws 27.5 The Electric Field 27.6 Electric Field Diagrams 27.7 Superposition of Electric Fields 27.8 Summary 27.9 Problems Chapter 28 Electrical Potential and Energy 28.1 Introduction 28.2 Electrical Potential Energy 28.3 Electrical Potential 28.4 Electrical Potential and Work 28.5 Equipotential and Field Lines 28.6 Electrical and External Forces Positive Charge, No External Force Positive Charge, External Force Negative Charge, External Force Charge Moving Perpendicular to the Field Direction 28.7 The Heart and ECG 28.8 Summary 28.9 Problems Chapter 29 Capacitance 29.1 Introduction 29.2 The Capacitor 29.3 Energy Stored in a Capacitor 29.4 Capacitors in Series and Parallel 29.5 The Dielectric in a Capacitor 29.6 Summary 29.7 Problems Chapter 30 Direct Currents and DC Circuits 30.1 Introduction 30.2 Electric Current 30.3 Current and Drift Velocity 30.4 Direct Versus Alternating Current 30.5 Circuits and Circuit Diagrams 30.6 Power Sources 30.7 Resistance and Ohm’s Law 30.8 Resistors and Resistivity 30.9 Wires 30.10 Kirchhoff’s Laws Kirchhoff’s Law of Voltages Kirchhoff’s Law of Currents 30.11 Resistors in Series and Parallel Resistors in Series Resistors in Parallel 30.12 Power Dissipation 30.13 Alternate Energy Units 30.14 Electric Shock Hazards 30.15 Electricity in Cells Cell Membranes Circuit Models of the Cell and The Cell Membrane 30.16 Summary 30.17 Problems Chapter 31 Time Behaviour of RC Circuits 31.1 Introduction 31.2 The RC Circuit 31.3 Discharging RC Circuit 31.4 Charging RC Circuit 31.5 Summary 31.6 Problems V Optics Chapter 32 The Nature of Light 32.1 Introduction 32.2 Electromagnetic Waves The Constant Speed of Light Wavelength and Frequency The Electromagnetic Spectrum 32.3 Reflection 32.4 Refraction Snell’s Law Total Internal Reflection 32.5 Dispersion Examples of Dispersion 32.6 Summary 32.7 Problems Chapter 33 Geometric Optics 33.1 Introduction 33.2 Ray Diagrams 33.3 Plane Mirrors 33.4 Spherical Mirrors Concave and Convex Mirrors Image Formation By a Concave Mirror Image Formation By a Convex Mirror Types of Image—Real and Virtual The Mirror Equation 33.5 Magnification 33.6 Lenses Image Formation By Lenses Image Formation by a Converging Lens Image Formation by a Diverging Lens Sign Convention for Lenses Magnification and Lens Power 33.7 Summary 33.8 Problems Chapter 34 The Eye and Vision 34.1 Introduction 34.2 The Parts of the Eye 34.3 Emmetropia (Normal Vision) 34.4 Presbyopia 34.5 Myopia 34.6 Hypermetropia (or Hyperopia) 34.7 Astigmatism 34.8 Alternative Structure and Placement Focussing Ability Eye Placement and Field of Vision 34.9 Colour Vision Detector Types Colour Science 34.10 Summary 34.11 Problems Chapter 35 Wave Optics 35.1 Introduction 35.2 Superposition and Interference 35.3 Huygens’ Principle Refraction Revisited: Proof of Snell’s Law 35.4 Diffraction 35.5 Young’s Double-Slit Experiment 35.6 Single-Slit Diffraction 35.7 Diffraction Gratings 35.8 Circular Apertures and Diffraction The Airy Pattern The Rayleigh Criterion and Resolution 35.9 Visual Acuity 35.10 Thin-Film Interference 35.11 Polarisation Polarisation By Reflection Polarised Light Detection By The Eye 35.12 Summary 35.13 Problems Chapter 36 Advanced Geometric Optics 36.1 Introduction 36.2 Image Formation by Reflection at a Spherical Surface Convex mirror Concave Mirror Focal Points and Sign Conventions 36.3 Image Formation by a Refraction at a Single Spherical Surface Convex Surface, Low Refractive Index to High Concave Surface, Low Refractive Index to High Sign Conventions Focal Points and Power of a Single Spherical Surface 36.4 Image Formation by a Thin Lens 36.5 Vergences Magnification 36.6 Multiple Lenses and Thick Lenses 36.7 Summary 36.8 Problems Chapter 37 Optical Instruments 37.1 Introduction 37.2 Single Converging Lens: The Magnifying Glass 37.3 Microscopes The Compound Microscope The Fixed Tube Length Laboratory Microscope Infinity-Corrected Microscopes 37.4 Telescopes The Galilean Telescope The Keplerian Telescope 37.5 Summary 37.6 Problems VI Radiation and Health Chapter 38 Atoms and Atomic Physics 38.1 Introduction 38.2 Parts of the Atom 38.3 Electron Orbitals Electrons Orbitals and Energy Levels Emission and Absorption Spectra 38.4 The Böhr Model of the Atom Circular Orbits and Quantisation de Broglie and Waves 38.5 Multielectron Atoms 38.6 Quantum Mechanics 38.7 Summary 38.8 Problems Chapter 39 The Nucleus and Nuclear Physics 39.1 Introduction 39.2 Nuclei and Isotopes Protons and Neutrons Atomic Number Atomic Mass Number Symbols and Terminology 39.3 Energy and Mass Units Equivalence of Mass and Energy The Electron Volt The Unified Atomic Mass Unit Mass in ‘MeV’ 39.4 Nuclear Forces The Strong Force and the Nucleus The Weak Nuclear Force 39.5 Nuclear Decay and Stability Binding Energy The Liquid Drop Model The Nuclear Stability Chart Fission Fusion 39.6 Summary 39.7 Problems Chapter 40 Production of Ionising Radiation 40.1 Introduction 40.2 Nuclear Decay Processes Alpha Decay Beta Decay Gamma Decay 40.3 Activity and Half-Life Activity Half-Life Most Likely Decay Mode and Examples of Decay Series 40.4 X-ray Production Characteristic Radiation Bremsstrahlung X-ray Tubes 40.5 Other Sources of Radiation Pair Annihilation Cosmic Rays 40.6 Summary 40.7 Problems Chapter 41 Interactions of Ionising Radiation 41.1 Introduction 41.2 Attenuation and Cross Section 41.3 X-rays and Gamma Radiation The Photoelectric Effect Pair Production The Compton Effect 41.4 Particles Neutrons Ions Electrons/Positrons 41.5 Detection of Ionising Radiation The Geiger–Müller Tube The Photomultiplier Photographic Emulsions 41.6 Summary 41.7 Problems Chapter 42 Biological Effects of Ionising Radiation 42.1 Introduction 42.2 Mechanisms of Cell Damage 42.3 Dose and Dose Equivalent Absorbed Dose Dose Equivalent Effective Dose 42.4 Types of Effect 42.5 Medical Effects and Risk 42.6 Ultraviolet Radiation 42.7 Summary 42.8 Problems Chapter 43 Medical Imaging 43.1 Introduction 43.2 X-ray Imaging 43.3 CT Scan 43.4 PET scan 43.5 Gamma Camera and SPECT 43.6 Diagnostic Procedures: Dose 43.7 Ultrasound Sonography 43.8 Summary Chapter 44 Magnetism and MRI 44.1 Introduction 44.2 Magnetism The Magnetic Force and Field Magnetic Field Examples Force on Charges in a Magnetic Field Induced Currents: Faraday’s Law and Lenz’s Law Types of Magnetic Materials 44.3 A Brief Outline of MRI 44.4 Nuclear Magnetic Resonance Angular Momentum, Rotation and Precession Classical Picture Versus Quantum Mechanics Interaction of Nuclei With Static Magnetic Fields Interaction of Nuclei With a Resonant Electromagnetic Field Relaxation Processes and Times 44.5 Magnetic Resonance Imaging Free Induction Decay Spin Echo Pulse Sequence T1 and T2 in MRI Spatial Information Magnetic Resonance Spectroscopy Contrast Agents Functional MRI Instrumentation Safety 44.6 Summary 44.7 Problems Appendices Appendix A Physical Constants A.1 High Precision Mass Values A.2 Useful Constants Appendix B Basic Maths and Science Skills B.1 Measurement and Units Units Unit Conversion Accuracy, Uncertainty, and Significant Figures B.2 Basic Algebra Working With Equations Problem Areas B.3 Exponentials and Logarithms Scientific Notation Logarithms B.4 Geometry B.5 Trigonometric Functions Basic Definitions Some Important Identities Common Angles B.6 Vectors Addition and Subtraction of Vectors Multiplication of a Vector by a Scalar Appendix C Answers To Odd Numbered Problems Selected Further Reading Index EULA