دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Arnold Hanslmeier
سری:
ISBN (شابک) : 3662646366, 9783662646373
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 701
[692]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Introduction to Astronomy and Astrophysics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر نجوم و اخترفیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی دانش پایه نظری و عملی نجوم و اخترفیزیک را ارائه می دهد. این یک نمای کلی از نجوم کلاسیک و روش های رصدی تا فیزیک خورشیدی و اخترفیزیک ستارگان و کهکشان ها را ارائه می دهد. با فصل هایی در مورد کیهان شناسی، اختر زیست شناسی و روش های ریاضی و عددی به پایان می رسد. تصاویر رنگی متعدد، مثالهایی از محاسبات و تمرینهایی با راهحل، این اثر را به همراهی مفید برای سخنرانیهای نجوم در مقطع کارشناسی تبدیل میکند. این کتاب برای دانشجویان فیزیک و نجوم در سطح تربیت معلم یا در مقطع کارشناسی مناسب است - اما همچنین افرادی که علاقه مند به علوم طبیعی با دانش پایه مناسب ریاضی و فیزیک هستند، در اینجا یک مقدمه جذاب برای این موضوع پیدا خواهند کرد. این نسخه چهارم با توجه به آخرین تحولات در نجوم به روز شده و بازنگری شده است. فصل روش های ریاضی دوباره طراحی شده است و نرم افزار مورد استفاده در حال حاضر منحصرا پایتون است. از مطالب: نجوم کروی - تاریخچه نجوم - مکانیک سماوی - ابزارهای نجومی - فیزیک اجرام منظومه شمسی - خورشید - متغیرهای حالت ستارگان - جوهای ستاره ای - ساختار ستارگان - تکامل ستارگان - ماده بین ستاره ای - کهکشان - سیستم های برون کهکشانی - کیهان شناسی - اختر زیست شناسی - روش های ریاضی. این کتاب ترجمهای از نسخه اصلی آلمانی 4th Einführung in Astronomie und Astrophysik اثر آرنولد هانسل مایر است که توسط Springer-Verlag GmbH آلمان، بخشی از Springer Nature در سال 2020 منتشر شده است. ترجمه با کمک هوش مصنوعی (ترجمه ماشینی توسط سرویس DeepL.com). بازنگری انسانی بعدی عمدتاً از نظر محتوا انجام شد، به طوری که کتاب از نظر سبکی متفاوت از یک ترجمه معمولی خوانده می شود. Springer Nature به طور مداوم برای توسعه ابزارهای تولید کتاب و فناوری های مرتبط برای حمایت از نویسندگان تلاش می کند.
This textbook provides the basic theoretical and practical knowledge of astronomy and astrophysics. It provides an overview from classical astronomy and observational methods to solar physics and astrophysics of stars and galaxies. It concludes with chapters on cosmology, astrobiology, and mathematical and numerical methods. Numerous color illustrations, examples of calculations, and exercises with solutions make this work a useful companion to undergraduate astronomy lectures. The book is suitable for students of physics and astronomy at teacher training level or in the Bachelor\'s degree - but also people interested in natural sciences with appropriate basic knowledge of mathematics and physics will find here an appealing introduction to the subject. This fourth edition has been updated and revised with respect to the latest developments in astronomy. The chapter on mathematical methods has been redesigned and the software used is now exclusively Python. From the contents: Spherical astronomy - History of astronomy - Celestial mechanics - Astronomical instruments - Physics of the bodies of the solar system - The Sun - State variables of the stars - Stellar atmospheres - Stellar structure - Stellar evolution - Interstellar matter - The Galaxy - Extragalactic systems - Cosmology - Astrobiology - Mathematical methods. This book is a translation of the original German 4th edition Einführung in Astronomie und Astrophysik by Arnold Hanslmeier, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Foreword Contents 1 Introduction 2 Spherical Astronomy 2.1 Coordinate Systems 2.1.1 Basic Principle for the Creation of Coordinate Systems 2.1.2 Horizon System 2.1.3 Equator System 2.1.4 Ecliptic System 2.1.5 Galactic System 2.1.6 Transformations of the Systems 2.2 The Time 2.2.1 Definitions, Solar Time and Sidereal Time 2.2.2 Calendar 2.2.3 The Star of Bethlehem 2.3 Star Positions 2.3.1 Constellations and Zodiac 2.3.2 Refraction 2.3.3 Aberration 2.3.4 Parallax 2.3.5 Precession, Nutation 2.3.6 Star Catalogues 2.3.7 Light Deflection and Exoplanets 2.4 Determination of Time and Place 2.4.1 Latitude 2.4.2 Time Determination 2.4.3 Modern Navigation Systems 2.5 Further Literature Tasks 3 History of Astronomy 3.1 Astronomy of Pre- and Early History 3.1.1 Stone Age 3.1.2 Egypt, Mesopotamia 3.1.3 China 3.1.4 Central and North America 3.1.5 Old Europe 3.2 Astronomy of the Greeks 3.2.1 Philosophical Considerations 3.2.2 First Measurements 3.2.3 Navigation 3.3 Astronomy in the Middle Ages and Modern Times 3.3.1 Astronomy of the Arabs 3.3.2 Middle Ages 3.3.3 Geocentric → Heliocentric 3.3.4 Kepler, Galileo, Newton 3.3.5 Celestial Mechanics 3.4 Modern Astrophysics and Cosmology 3.4.1 The Discovery of Further Objects in the Solar System 3.4.2 Astrophysics 3.4.3 The Universe 3.4.4 Concluding Remarks 3.4.5 What is Matter? 3.5 Further Literature 4 Celestial Mechanics 4.1 Moon and Planetary Orbits 4.1.1 Description of Planetary Orbits, Orbital Elements 4.1.2 Ephemeris Calculation 4.1.3 Apparent Planetary Orbits in the Sky 4.1.4 Perihelion Rotation 4.1.5 Lunar Orbit 4.1.6 Exoplanet Tidal Locking 4.1.7 Tides 4.1.8 Comparison of Tidal Force of the Moon and Capillary Action in Plants 4.2 Two-Body Problem 4.2.1 Definition of the Two-Body Problem 4.2.2 Angular Momentum, Area Theorem 4.2.3 Orbit Shape 4.2.4 Energy Theorem 4.2.5 Third Kepler's Law 4.3 N-Body Problem 4.3.1 The General N-Body Problem 4.3.2 The General Three-Body Problem 4.3.3 Restricted Three-Body Problem 4.3.4 The Runge-Kutta Method for Numerical Integration 4.3.5 Stability 4.4 Many-Particle Systems 4.4.1 Virial Theorem and Distance of an Interstellar Gas Cloud 4.4.2 Ergodic Behavior 4.5 Spaceflight 4.5.1 Escape Velocities 4.5.2 Rocket Formula 4.5.3 Satellite in Earth Orbit 4.5.4 Influences on Satellite Orbits 4.6 Resonances and Chaos in the Planetary System 4.6.1 Chaos 4.6.2 Resonances in the Solar System 4.6.3 Migration of Planets 4.6.4 Chaos in the Solar System 4.7 Eclipses 4.7.1 Lunar Eclipses 4.7.2 Solar Eclipses 4.7.3 Planetary Transits 4.8 Further Literature Tasks 5 Astronomical Instruments 5.1 Telescopes 5.1.1 Basic Properties 5.1.2 Seeing and Large Telescopes 5.1.3 Imaging Errors 5.1.4 Telescope Types 5.1.5 Telescope Mounts 5.1.6 Robotic Telescopes 5.2 Modern Optical Telescopes 5.2.1 Modern Earthbound Telescopes 5.2.2 The Hubble Space Telescope and Other Projects 5.3 Detectors 5.3.1 Human Eye and Photography 5.3.2 CCD 5.3.3 CMOS 5.3.4 Back-Illuminated Sensor 5.3.5 Speckle Interferometry 5.3.6 Image Correction 5.4 Non-Optical Telescopes 5.4.1 Radio Telescopes 5.4.2 Infrared Telescopes 5.4.3 X-Ray Telescopes 5.5 Spectroscopy 5.5.1 General Information About Spectroscopy 5.5.2 Types of Spectrographs 5.6 Radiation and Spectrum 5.6.1 The Electromagnetic Spectrum 5.6.2 Thermal Radiation 5.6.3 Emission and Absorption Lines 5.6.4 Polarized Light 5.6.5 Magnetic Fields and Radiation 5.6.6 Einstein Coefficients 5.6.7 Coherence 5.7 Further Literature Tasks 6 Physics of the Solar System Bodies 6.1 Overview 6.1.1 Sun and Planets 6.1.2 A Model of the Solar System 6.1.3 The Solar System Seen from Outside 6.2 Properties of the Planets 6.2.1 Rotation Period 6.2.2 Mass Distribution 6.2.3 Albedo 6.2.4 Spectrum 6.2.5 Global Energy Budget 6.2.6 Hydrostatic Equilibrium 6.2.7 Stability of a Satellite, Roche Limit 6.2.8 Planetary Atmospheres 6.3 Earth and Moon 6.3.1 Structure of the Earth 6.3.2 Geological and Biological Evolution 6.3.3 Earth's Magnetic Field 6.3.4 Earth's Atmosphere 6.3.5 The Moon-General Porperties 6.3.6 Origin of the Moon 6.3.7 The Interior of the Moon 6.3.8 The Far Side of the Moon 6.4 Mercury and Venus 6.4.1 Mercury: Basic Data 6.4.2 The Rotation of Mercury 6.4.3 The Surface of Mercury 6.4.4 Venus: Basic Data 6.4.5 Surface of Venus 6.4.6 Atmosphere of Venus 6.4.7 Venus and Climate Change on Earth 6.5 Mars 6.5.1 Mars: General Data 6.5.2 Martian Surface 6.5.3 Mars Atmosphere 6.5.4 Mars: Terraforming? 6.5.5 Martian Moons 6.6 Jupiter and Saturn 6.6.1 Jupiter: General Properties 6.6.2 Space Missions to Jupiter 6.6.3 Structure of the Giant Planets 6.6.4 Jupiter Atmosphere 6.6.5 Magnetosphere of Jupiter 6.6.6 Jupiter's Rings and Moons 6.6.7 Saturn: Basic Data 6.6.8 Saturn's Rings 6.6.9 Saturn's Moons 6.7 Uranus and Neptune 6.7.1 Discovery of Uranus and Neptune 6.7.2 Rings and Satellites of Uranus and Neptune 6.8 Dwarf Planets and Asteroids 6.8.1 Pluto 6.8.2 Ceres and Other Dwarf Planets 6.8.3 Asteroids: Naming and Types 6.8.4 Distribution of Asteroids 6.8.5 NEOs 6.9 Comets 6.9.1 Comets: Basic Properties 6.9.2 Kuiper Belt and Oort's Cloud 6.9.3 Sungrazer 6.10 Meteoroids 6.10.1 Nomenclature 6.10.2 Classification 6.10.3 Interplanetary Matter 6.11 Origin of the Solar System 6.11.1 Extrasolar Planetary Systems 6.11.2 Theories of Formation 6.11.3 Protoplanetary Nebula 6.12 Further Literature Tasks 7 The Sun 7.1 Basic Data and Coordinates 7.1.1 Basic Data 7.1.2 Coordinates 7.1.3 Distance 7.1.4 Solar Mass 7.1.5 Radius 7.1.6 Luminosity 7.1.7 Effective Temperature 7.1.8 Sun: Observation 7.2 The Structure of the Sun, the Quiet Sun 7.2.1 General Structure of the Sun 7.2.2 Sun's Interior 7.2.3 Photosphere 7.2.4 Chromosphere 7.2.5 Corona 7.3 The Active Sun 7.3.1 Sunspots 7.3.2 Faculae 7.3.3 Prominences 7.3.4 Flares and Coronal Mass Ejections 7.3.5 The Radio Radiation 7.3.6 X-rays of the Corona 7.4 The Space-Weather-Solar-Terrestrial Relations 7.4.1 The Solar Activity Cycle 7.4.2 Time Series, Period Analysis 7.4.3 The Solar Irradiance 7.5 Helioseismology 7.5.1 Mathematical Description 7.5.2 Observational Results 7.6 Magnetohydrodynamics of the Sun 7.6.1 Maxwell's Equations 7.6.2 Induction Equation 7.6.3 Plasma Equations 7.6.4 Motion of a Particle in a Magnetic Field 7.7 Further Literature Tasks 8 State Variables of Stars 8.1 Distance, Magnitudes 8.1.1 Apparent Brightness 8.1.2 Distance 8.1.3 Absolute Brightness, Distance Modulus 8.1.4 Bolometric Brightness 8.2 Stellar Radii 8.2.1 Basic Principle 8.2.2 Stellar Interferometer 8.2.3 Stellar Occultations by the Moon 8.2.4 Eclipsing Variable Stars 8.2.5 Speckle Interferometry 8.2.6 Microlensing 8.3 Stellar Masses 8.3.1 Kepler's Third Law 8.3.2 Gravitational Red Shift 8.3.3 Microlensing 8.3.4 Derived Quantities 8.4 Stellar Temperatures 8.4.1 Stars as Black Bodies 8.4.2 Other Temperature Terms 8.5 Classification of Stars, HRD 8.5.1 Spectral Classification 8.5.2 The Hertzsprung-Russell Diagram 8.5.3 Luminosity Classes 8.5.4 Balmer Discontinuity 8.5.5 Star Population and FHD 8.5.6 The Mass-Luminosity Relation 8.6 Rotation and Magnetic Fields 8.6.1 Rotation 8.6.2 Magnetic Fields 8.7 Peculiar Stars 8.7.1 Bright Stars 8.7.2 Algol and Eclipsing Binaries 8.8 Further Literature Tasks 9 Stellar Atmospheres 9.1 Quantum Mechanical Description 9.1.1 Description of a Particle 9.1.2 Schrödinger Equation 9.1.3 Wave Functions for Hydrogen 9.1.4 Quantum Numbers 9.1.5 Electron Configurations 9.1.6 Hydrogen Fine Structure 9.1.7 Complex Atoms 9.2 Excitation and Ionization 9.2.1 Thermodynamic Equilibrium 9.2.2 Boltzmann Formula 9.2.3 Saha Equation 9.3 Radiation Transport 9.3.1 Transfer Equation 9.3.2 Solutions of the Transfer Equation 9.4 Absorption Coefficients 9.4.1 Continuous Absorption 9.4.2 Scattering 9.4.3 Theory of Absorption Lines 9.5 Line Profiles 9.5.1 Damping 9.5.2 Doppler Broadening 9.5.3 Voigt Profile 9.6 Analysis of Stellar Spectra 9.6.1 Curves of Growth 9.6.2 Quantitative Spectral Analysis 9.7 Stellar Atmosphere Models 9.7.1 Comparison: Sun and Vega 9.7.2 Numerical Solutions 9.8 Asteroseismology 9.8.1 Observations 9.8.2 Types of Waves 9.9 Further Literature Tasks 10 Stellar Structure 10.1 Basic Physical Laws of Stellar Structure 10.1.1 Hydrostatic Equilibrium 10.1.2 Equation of Motion with Spherical Symmetry 10.1.3 General Relativity 10.1.4 Equation of State 10.1.5 Degeneracy 10.1.6 Summary: Equation of State 10.2 Energy Transport 10.2.1 Convection 10.2.2 Opacity 10.3 Energy Sources 10.3.1 Thermonuclear Energy Production 10.3.2 Neutrinos 10.4 Special Stellar Models 10.4.1 Polytropic Models 10.4.2 Homologous Equations 10.5 Further Literature Tasks 11 Stellar Evolution 11.1 Star Formation and Evolution 11.1.1 Protostars 11.1.2 Collapse of a Sun-Like Star 11.1.3 The Age of Stars 11.1.4 Evolution of a Star with One Solar Mass 11.2 Comparison of Stellar Evolution 11.2.1 Low-Mass Stars 11.2.2 Massive Stars 11.3 White Dwarfs 11.3.1 General Properties 11.3.2 General Relativity and White Dwarfs 11.3.3 Magnetic Fields 11.3.4 Brown Dwarfs 11.4 Neutron Stars 11.4.1 Formation of Neutron Stars 11.4.2 Pulsars 11.5 Supernovae 11.5.1 Classification 11.5.2 Nuclear Synthesis During a SN 11.5.3 Observed Supernovae 11.6 Black Holes 11.6.1 General 11.6.2 Candidates for Black Holes 11.6.3 Quantum Theory of Black Holes 11.6.4 Accretion 11.7 Gamma Ray Bursts 11.7.1 Properties of GRB 11.7.2 Explanation of GRB 11.8 Variable Stars 11.8.1 General 11.8.2 Pulsation Variable 11.8.3 Semi-regular Variables 11.8.4 Eruptive Variables 11.8.5 Peculiar Stars 11.8.6 Planetary Nebulae 11.9 Stellar Activity 11.9.1 Stellar Activity and Convection 11.9.2 Mass Loss of Stars 11.10 Further Literature Tasks 12 Interstellar Matter 12.1 Discovery, General Properties 12.1.1 Discovery of Interstellar Matter 12.1.2 Composition of Interstellar Matter 12.2 Interstellar Dust 12.2.1 Extinction 12.2.2 Scattering 12.2.3 Polarization 12.3 Interstellar Gas 12.3.1 Neutral Hydrogen 12.3.2 Emission Nebulae, H-II Regions 12.3.3 Special Emission Nebulae 12.3.4 Light Echoes 12.4 Cosmic Rays 12.4.1 Discovery 12.4.2 Composition and Origin 12.4.3 Magnetic Fields and Charged Particles 12.4.4 Solar Activity and Cosmic Rays 12.5 Further Literature Tasks 13 The Galaxy 13.1 Methods for Determining Distances 13.1.1 Trigonometric Methods 13.1.2 Photometric Standard Candles 13.2 The Structure of Our Milky Way 13.2.1 Rough Structure 13.2.2 Galactic Coordinates 13.2.3 Distribution of the Stars 13.2.4 Galaxy: Components 13.2.5 Local Solar Environment, Local Bubble 13.2.6 Stellar Statistics 13.3 Star Populations and Density Waves 13.3.1 Star Populations 13.3.2 Density Waves, Spiral Structure 13.4 Rotation of the Galaxy 13.4.1 Radial and Tangential Motion 13.4.2 Galactic Rotation, LSR 13.4.3 Galactic Rotation Curve 13.5 Dark Matter in the Milky Way 13.5.1 The Nature of Dark Matter 13.5.2 Galactic Microlensing 13.6 Galactic Center 13.6.1 Definition of the Center 13.6.2 Central Star Cluster and Black Hole 13.7 Evolution of the Galaxy 13.7.1 Theories to the Origin of the Spiral-Arms 13.7.2 Age of the Galaxy and Magnetic Field 13.8 Further Literature Tasks 14 Extragalactic Systems 14.1 Classification 14.1.1 Catalogues 14.1.2 Hubble Classification 14.1.3 Active Galaxies 14.1.4 Other Classifications of Galaxies 14.2 Discussion of the Individual Types 14.2.1 Elliptical Galaxies, E 14.2.2 Spiral Galaxies 14.2.3 Irregular Galaxies 14.2.4 Distribution Among the Types 14.2.5 Integral Properties and Diameters 14.2.6 The Magellanic Clouds 14.2.7 Population Synthesis 14.3 Supermassive Black Holes 14.3.1 Detection of SMBHs 14.3.2 SMBHs and Galaxy Properties 14.4 Active Galaxies 14.4.1 Active Galactic Nuclei 14.4.2 Radio Galaxies 14.4.3 Quasars 14.4.4 Galaxies with High Red Shift 14.4.5 Blazar 14.5 Galaxy Clusters 14.5.1 The Local Group 14.5.2 Abell Catalogue of Galaxy Clusters 14.5.3 Galaxy Collisions 14.5.4 Super Cluster 14.5.5 Special Galaxy Clusters 14.6 Further Literature Tasks 15 Cosmology 15.1 Expansion of the Universe 15.1.1 View into the Past 15.1.2 Olbers Paradox 15.1.3 Galaxy Counts 15.1.4 The Redshift of the Galaxies 15.1.5 The Age of the Universe 15.1.6 Homogeneity and Isotropy 15.1.7 Methods of Distance Determination 15.2 Newtonian cosmology 15.2.1 Expansion 15.2.2 Equation of Motion 15.2.3 Conservation of Energy 15.3 Theory of Relativity 15.3.1 Special Theory of Relativity 15.3.2 Four Vectors, Transformations 15.3.3 General Theory of Relativity 15.3.4 Matter and Space-Time Curvature 15.3.5 Metric of the Space 15.3.6 Friedmann-Lemaître Equations 15.3.7 The Cosmological Constant and Vacuum Energy 15.3.8 Gravitational Waves 15.4 Dark Energy, Accelerated Expansion 15.4.1 Observations 15.4.2 Dark Energy 15.5 The Early Universe 15.5.1 Big Bang: Observational Hints 15.5.2 Sunyaev-Zel'dovich Effect 15.5.3 Acoustic Oscillations 15.5.4 Formation of Particles 15.5.5 Quarks and Quark-Gluon Plasma 15.5.6 Particle Generation 15.6 Symmetry Breaking in the Early Universe 15.6.1 The Four Forces of Nature 15.6.2 The Early Universe 15.6.3 Inflationary Universe 15.6.4 String Theory 15.6.5 Quantum Foam 15.6.6 Quantum Vacuum 15.6.7 Loop Gravity, Quantum Loop Gravity 15.6.8 The First Stars 15.6.9 Parallel Universes 15.7 Time Scale 15.8 Further Literature Tasks 16 Astrobiology 16.1 Life on Earth and in the Solar System 16.1.1 What Is Life? 16.1.2 Life on Earth 16.1.3 Protective Shields for Life on Earth 16.1.4 Life in the Solar System 16.2 Discovery of Extrasolar Planetary Systems 16.2.1 Astrometry 16.2.2 Radial Velocity Method 16.2.3 Light Curves, Transit Observations 16.2.4 Microlensing 16.2.5 Einstein-Beaming 16.2.6 Earth-Based Observations 16.3 Host Stars 16.3.1 Hertzsprung-Russell Diagram 16.3.2 Habitable Zone 16.3.3 Examples 16.4 Further Literature Tasks 17 Mathematical Methods 17.1 Python-a Crash Course 17.1.1 What Is Python? 17.1.2 A First Simple Python Program 17.1.3 Example: Brightness Measurements 17.2 Statistics 17.2.1 Mean Values 17.2.2 Distribution Functions 17.2.3 Moments 17.3 Curve Fits and Correlation Calculation 17.3.1 Fitting Curves, Least Squares Method 17.3.2 Correlations 17.4 Differential Equations 17.4.1 First Order Linear Differential Equations 17.4.2 Oscillator Equation 17.4.3 Partial Differential Equations 17.5 Numerical Mathematics 17.5.1 Interpolation Polynomials 17.5.2 Divided Differences 17.5.3 Newton's Interpolation Method 17.5.4 Interpolation with Unevenly Distributed Grid Points 17.5.5 Numerical Differentiation 17.5.6 Numerical Integration 17.5.7 Numerical Solution of Differential Equations 17.6 Fourier Methods 17.6.1 Autocorrelation 17.6.2 The Fast Fourier Transform, FFT 17.6.3 Digital Filters 17.6.4 Fourier Transforms in Optics 17.7 Vector Calculus 17.7.1 General 17.7.2 Gradient, Divergence, Curl 17.7.3 Applications 17.8 Splines 17.9 Special Software Packages 17.9.1 The Ephem Program Package 17.9.2 Calculation of the Light Curves of Exoplanet Transits 17.9.3 Image Processing 17.9.4 The File Format Fits 17.10 Further Literature Tasks A Appendix A.1 Literature A.1.1 General A.1.2 Journals A.1.3 Important Internet Addresses A.1.4 Software (Professional) A.2 Test Questions A.3 Tables