ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to Astronomy and Astrophysics

دانلود کتاب مقدمه ای بر نجوم و اخترفیزیک

Introduction to Astronomy and Astrophysics

مشخصات کتاب

Introduction to Astronomy and Astrophysics

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 3662646366, 9783662646373 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 701
[692] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Introduction to Astronomy and Astrophysics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر نجوم و اخترفیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر نجوم و اخترفیزیک

این کتاب درسی دانش پایه نظری و عملی نجوم و اخترفیزیک را ارائه می دهد. این یک نمای کلی از نجوم کلاسیک و روش های رصدی تا فیزیک خورشیدی و اخترفیزیک ستارگان و کهکشان ها را ارائه می دهد. با فصل هایی در مورد کیهان شناسی، اختر زیست شناسی و روش های ریاضی و عددی به پایان می رسد. تصاویر رنگی متعدد، مثال‌هایی از محاسبات و تمرین‌هایی با راه‌حل، این اثر را به همراهی مفید برای سخنرانی‌های نجوم در مقطع کارشناسی تبدیل می‌کند. این کتاب برای دانشجویان فیزیک و نجوم در سطح تربیت معلم یا در مقطع کارشناسی مناسب است - اما همچنین افرادی که علاقه مند به علوم طبیعی با دانش پایه مناسب ریاضی و فیزیک هستند، در اینجا یک مقدمه جذاب برای این موضوع پیدا خواهند کرد. این نسخه چهارم با توجه به آخرین تحولات در نجوم به روز شده و بازنگری شده است. فصل روش های ریاضی دوباره طراحی شده است و نرم افزار مورد استفاده در حال حاضر منحصرا پایتون است. از مطالب: نجوم کروی - تاریخچه نجوم - مکانیک سماوی - ابزارهای نجومی - فیزیک اجرام منظومه شمسی - خورشید - متغیرهای حالت ستارگان - جوهای ستاره ای - ساختار ستارگان - تکامل ستارگان - ماده بین ستاره ای - کهکشان - سیستم های برون کهکشانی - کیهان شناسی - اختر زیست شناسی - روش های ریاضی. این کتاب ترجمه‌ای از نسخه اصلی آلمانی 4th Einführung in Astronomie und Astrophysik اثر آرنولد هانسل مایر است که توسط Springer-Verlag GmbH آلمان، بخشی از Springer Nature در سال 2020 منتشر شده است. ترجمه با کمک هوش مصنوعی (ترجمه ماشینی توسط سرویس DeepL.com). بازنگری انسانی بعدی عمدتاً از نظر محتوا انجام شد، به طوری که کتاب از نظر سبکی متفاوت از یک ترجمه معمولی خوانده می شود. Springer Nature به طور مداوم برای توسعه ابزارهای تولید کتاب و فناوری های مرتبط برای حمایت از نویسندگان تلاش می کند.


توضیحاتی درمورد کتاب به خارجی

This textbook provides the basic theoretical and practical knowledge of astronomy and astrophysics. It provides an overview from classical astronomy and observational methods to solar physics and astrophysics of stars and galaxies. It concludes with chapters on cosmology, astrobiology, and mathematical and numerical methods. Numerous color illustrations, examples of calculations, and exercises with solutions make this work a useful companion to undergraduate astronomy lectures. The book is suitable for students of physics and astronomy at teacher training level or in the Bachelor\'s degree - but also people interested in natural sciences with appropriate basic knowledge of mathematics and physics will find here an appealing introduction to the subject. This fourth edition has been updated and revised with respect to the latest developments in astronomy. The chapter on mathematical methods has been redesigned and the software used is now exclusively Python. From the contents: Spherical astronomy - History of astronomy - Celestial mechanics - Astronomical instruments - Physics of the bodies of the solar system - The Sun - State variables of the stars - Stellar atmospheres - Stellar structure - Stellar evolution - Interstellar matter - The Galaxy - Extragalactic systems - Cosmology - Astrobiology - Mathematical methods. This book is a translation of the original German 4th edition Einführung in Astronomie und Astrophysik by Arnold Hanslmeier, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.



فهرست مطالب

Foreword
Contents
1 Introduction
2 Spherical Astronomy
	2.1 Coordinate Systems
		2.1.1 Basic Principle for the Creation of Coordinate Systems
		2.1.2 Horizon System
		2.1.3 Equator System
		2.1.4 Ecliptic System
		2.1.5 Galactic System
		2.1.6 Transformations of the Systems
	2.2 The Time
		2.2.1 Definitions, Solar Time and Sidereal Time
		2.2.2 Calendar
		2.2.3 The Star of Bethlehem
	2.3 Star Positions
		2.3.1 Constellations and Zodiac
		2.3.2 Refraction
		2.3.3 Aberration
		2.3.4 Parallax
		2.3.5 Precession, Nutation
		2.3.6 Star Catalogues
		2.3.7 Light Deflection and Exoplanets
	2.4 Determination of Time and Place
		2.4.1 Latitude
		2.4.2 Time Determination
		2.4.3 Modern Navigation Systems
	2.5 Further Literature
	Tasks
3 History of Astronomy
	3.1 Astronomy of Pre- and Early History
		3.1.1 Stone Age
		3.1.2 Egypt, Mesopotamia
		3.1.3 China
		3.1.4 Central and North America
		3.1.5 Old Europe
	3.2 Astronomy of the Greeks
		3.2.1 Philosophical Considerations
		3.2.2 First Measurements
		3.2.3 Navigation
	3.3 Astronomy in the Middle Ages and Modern Times
		3.3.1 Astronomy of the Arabs
		3.3.2 Middle Ages
		3.3.3 Geocentric → Heliocentric
		3.3.4 Kepler, Galileo, Newton
		3.3.5 Celestial Mechanics
	3.4 Modern Astrophysics and Cosmology
		3.4.1 The Discovery of Further Objects in the Solar System
		3.4.2 Astrophysics
		3.4.3 The Universe
		3.4.4 Concluding Remarks
		3.4.5 What is Matter?
	3.5 Further Literature
4 Celestial Mechanics
	4.1 Moon and Planetary Orbits
		4.1.1 Description of Planetary Orbits, Orbital Elements
		4.1.2 Ephemeris Calculation
		4.1.3 Apparent Planetary Orbits in the Sky
		4.1.4 Perihelion Rotation
		4.1.5 Lunar Orbit
		4.1.6 Exoplanet Tidal Locking
		4.1.7 Tides
		4.1.8 Comparison of Tidal Force of the Moon and Capillary Action in Plants
	4.2 Two-Body Problem
		4.2.1 Definition of the Two-Body Problem
		4.2.2 Angular Momentum, Area Theorem
		4.2.3 Orbit Shape
		4.2.4 Energy Theorem
		4.2.5 Third Kepler's Law
	4.3 N-Body Problem
		4.3.1 The General N-Body Problem
		4.3.2 The General Three-Body Problem
		4.3.3 Restricted Three-Body Problem
		4.3.4 The Runge-Kutta Method for Numerical Integration
		4.3.5 Stability
	4.4 Many-Particle Systems
		4.4.1 Virial Theorem and Distance of an Interstellar Gas Cloud
		4.4.2 Ergodic Behavior
	4.5 Spaceflight
		4.5.1 Escape Velocities
		4.5.2 Rocket Formula
		4.5.3 Satellite in Earth Orbit
		4.5.4 Influences on Satellite Orbits
	4.6 Resonances and Chaos in the Planetary System
		4.6.1 Chaos
		4.6.2 Resonances in the Solar System
		4.6.3 Migration of Planets
		4.6.4 Chaos in the Solar System
	4.7 Eclipses
		4.7.1 Lunar Eclipses
		4.7.2 Solar Eclipses
		4.7.3 Planetary Transits
	4.8 Further Literature
	Tasks
5 Astronomical Instruments
	5.1 Telescopes
		5.1.1 Basic Properties
		5.1.2 Seeing and Large Telescopes
		5.1.3 Imaging Errors
		5.1.4 Telescope Types
		5.1.5 Telescope Mounts
		5.1.6 Robotic Telescopes
	5.2 Modern Optical Telescopes
		5.2.1 Modern Earthbound Telescopes
		5.2.2 The Hubble Space Telescope and Other Projects
	5.3 Detectors
		5.3.1 Human Eye and Photography
		5.3.2 CCD
		5.3.3 CMOS
		5.3.4 Back-Illuminated Sensor
		5.3.5 Speckle Interferometry
		5.3.6 Image Correction
	5.4 Non-Optical Telescopes
		5.4.1 Radio Telescopes
		5.4.2 Infrared Telescopes
		5.4.3 X-Ray Telescopes
	5.5 Spectroscopy
		5.5.1 General Information About Spectroscopy
		5.5.2 Types of Spectrographs
	5.6 Radiation and Spectrum
		5.6.1 The Electromagnetic Spectrum
		5.6.2 Thermal Radiation
		5.6.3 Emission and Absorption Lines
		5.6.4 Polarized Light
		5.6.5 Magnetic Fields and Radiation
		5.6.6 Einstein Coefficients
		5.6.7 Coherence
	5.7 Further Literature
	Tasks
6 Physics of the Solar System Bodies
	6.1 Overview
		6.1.1 Sun and Planets
		6.1.2 A Model of the Solar System
		6.1.3 The Solar System Seen from Outside
	6.2 Properties of the Planets
		6.2.1 Rotation Period
		6.2.2 Mass Distribution
		6.2.3 Albedo
		6.2.4 Spectrum
		6.2.5 Global Energy Budget
		6.2.6 Hydrostatic Equilibrium
		6.2.7 Stability of a Satellite, Roche Limit
		6.2.8 Planetary Atmospheres
	6.3 Earth and Moon
		6.3.1 Structure of the Earth
		6.3.2 Geological and Biological Evolution
		6.3.3 Earth's Magnetic Field
		6.3.4 Earth's Atmosphere
		6.3.5 The Moon-General Porperties
		6.3.6 Origin of the Moon
		6.3.7 The Interior of the Moon
		6.3.8 The Far Side of the Moon
	6.4 Mercury and Venus
		6.4.1 Mercury: Basic Data
		6.4.2 The Rotation of Mercury
		6.4.3 The Surface of Mercury
		6.4.4 Venus: Basic Data
		6.4.5 Surface of Venus
		6.4.6 Atmosphere of Venus
		6.4.7 Venus and Climate Change on Earth
	6.5 Mars
		6.5.1 Mars: General Data
		6.5.2 Martian Surface
		6.5.3 Mars Atmosphere
		6.5.4 Mars: Terraforming?
		6.5.5 Martian Moons
	6.6 Jupiter and Saturn
		6.6.1 Jupiter: General Properties
		6.6.2 Space Missions to Jupiter
		6.6.3 Structure of the Giant Planets
		6.6.4 Jupiter Atmosphere
		6.6.5 Magnetosphere of Jupiter
		6.6.6 Jupiter's Rings and Moons
		6.6.7 Saturn: Basic Data
		6.6.8 Saturn's Rings
		6.6.9 Saturn's Moons
	6.7 Uranus and Neptune
		6.7.1 Discovery of Uranus and Neptune
		6.7.2 Rings and Satellites of Uranus and Neptune
	6.8 Dwarf Planets and Asteroids
		6.8.1 Pluto
		6.8.2 Ceres and Other Dwarf Planets
		6.8.3 Asteroids: Naming and Types
		6.8.4 Distribution of Asteroids
		6.8.5 NEOs
	6.9 Comets
		6.9.1 Comets: Basic Properties
		6.9.2 Kuiper Belt and Oort's Cloud
		6.9.3 Sungrazer
	6.10 Meteoroids
		6.10.1 Nomenclature
		6.10.2 Classification
		6.10.3 Interplanetary Matter
	6.11 Origin of the Solar System
		6.11.1 Extrasolar Planetary Systems
		6.11.2 Theories of Formation
		6.11.3 Protoplanetary Nebula
	6.12 Further Literature
	Tasks
7 The Sun
	7.1 Basic Data and Coordinates
		7.1.1 Basic Data
		7.1.2 Coordinates
		7.1.3 Distance
		7.1.4 Solar Mass
		7.1.5 Radius
		7.1.6 Luminosity
		7.1.7 Effective Temperature
		7.1.8 Sun: Observation
	7.2 The Structure of the Sun, the Quiet Sun
		7.2.1 General Structure of the Sun
		7.2.2 Sun's Interior
		7.2.3 Photosphere
		7.2.4 Chromosphere
		7.2.5 Corona
	7.3 The Active Sun
		7.3.1 Sunspots
		7.3.2 Faculae
		7.3.3 Prominences
		7.3.4 Flares and Coronal Mass Ejections
		7.3.5 The Radio Radiation
		7.3.6 X-rays of the Corona
	7.4 The Space-Weather-Solar-Terrestrial Relations
		7.4.1 The Solar Activity Cycle
		7.4.2 Time Series, Period Analysis
		7.4.3 The Solar Irradiance
	7.5 Helioseismology
		7.5.1 Mathematical Description
		7.5.2 Observational Results
	7.6 Magnetohydrodynamics of the Sun
		7.6.1 Maxwell's Equations
		7.6.2 Induction Equation
		7.6.3 Plasma Equations
		7.6.4 Motion of a Particle in a Magnetic Field
	7.7 Further Literature
	Tasks
8 State Variables of Stars
	8.1 Distance, Magnitudes
		8.1.1 Apparent Brightness
		8.1.2 Distance
		8.1.3 Absolute Brightness, Distance Modulus
		8.1.4 Bolometric Brightness
	8.2 Stellar Radii
		8.2.1 Basic Principle
		8.2.2 Stellar Interferometer
		8.2.3 Stellar Occultations by the Moon
		8.2.4 Eclipsing Variable Stars
		8.2.5 Speckle Interferometry
		8.2.6 Microlensing
	8.3 Stellar Masses
		8.3.1 Kepler's Third Law
		8.3.2 Gravitational Red Shift
		8.3.3 Microlensing
		8.3.4 Derived Quantities
	8.4 Stellar Temperatures
		8.4.1 Stars as Black Bodies
		8.4.2 Other Temperature Terms
	8.5 Classification of Stars, HRD
		8.5.1 Spectral Classification
		8.5.2 The Hertzsprung-Russell Diagram
		8.5.3 Luminosity Classes
		8.5.4 Balmer Discontinuity
		8.5.5 Star Population and FHD
		8.5.6 The Mass-Luminosity Relation
	8.6 Rotation and Magnetic Fields
		8.6.1 Rotation
		8.6.2 Magnetic Fields
	8.7 Peculiar Stars
		8.7.1 Bright Stars
		8.7.2 Algol and Eclipsing Binaries
	8.8 Further Literature
	Tasks
9 Stellar Atmospheres
	9.1 Quantum Mechanical Description
		9.1.1 Description of a Particle
		9.1.2 Schrödinger Equation
		9.1.3 Wave Functions for Hydrogen
		9.1.4 Quantum Numbers
		9.1.5 Electron Configurations
		9.1.6 Hydrogen Fine Structure
		9.1.7 Complex Atoms
	9.2 Excitation and Ionization
		9.2.1 Thermodynamic Equilibrium
		9.2.2 Boltzmann Formula
		9.2.3 Saha Equation
	9.3 Radiation Transport
		9.3.1 Transfer Equation
		9.3.2 Solutions of the Transfer Equation
	9.4 Absorption Coefficients
		9.4.1 Continuous Absorption
		9.4.2 Scattering
		9.4.3 Theory of Absorption Lines
	9.5 Line Profiles
		9.5.1 Damping
		9.5.2 Doppler Broadening
		9.5.3 Voigt Profile
	9.6 Analysis of Stellar Spectra
		9.6.1 Curves of Growth
		9.6.2 Quantitative Spectral Analysis
	9.7 Stellar Atmosphere Models
		9.7.1 Comparison: Sun and Vega
		9.7.2 Numerical Solutions
	9.8 Asteroseismology
		9.8.1 Observations
		9.8.2 Types of Waves
	9.9 Further Literature
	Tasks
10 Stellar Structure
	10.1 Basic Physical Laws of Stellar Structure
		10.1.1 Hydrostatic Equilibrium
		10.1.2 Equation of Motion with Spherical Symmetry
		10.1.3 General Relativity
		10.1.4 Equation of State
		10.1.5 Degeneracy
		10.1.6 Summary: Equation of State
	10.2 Energy Transport
		10.2.1 Convection
		10.2.2 Opacity
	10.3 Energy Sources
		10.3.1 Thermonuclear Energy Production
		10.3.2 Neutrinos
	10.4 Special Stellar Models
		10.4.1 Polytropic Models
		10.4.2 Homologous Equations
	10.5 Further Literature
	Tasks
11 Stellar Evolution
	11.1 Star Formation and Evolution
		11.1.1 Protostars
		11.1.2 Collapse of a Sun-Like Star
		11.1.3 The Age of Stars
		11.1.4 Evolution of a Star with One Solar Mass
	11.2 Comparison of Stellar Evolution
		11.2.1 Low-Mass Stars
		11.2.2 Massive Stars
	11.3 White Dwarfs
		11.3.1 General Properties
		11.3.2 General Relativity and White Dwarfs
		11.3.3 Magnetic Fields
		11.3.4 Brown Dwarfs
	11.4 Neutron Stars
		11.4.1 Formation of Neutron Stars
		11.4.2 Pulsars
	11.5 Supernovae
		11.5.1 Classification
		11.5.2 Nuclear Synthesis During a SN
		11.5.3 Observed Supernovae
	11.6 Black Holes
		11.6.1 General
		11.6.2 Candidates for Black Holes
		11.6.3 Quantum Theory of Black Holes
		11.6.4 Accretion
	11.7 Gamma Ray Bursts
		11.7.1 Properties of GRB
		11.7.2 Explanation of GRB
	11.8 Variable Stars
		11.8.1 General
		11.8.2 Pulsation Variable
		11.8.3 Semi-regular Variables
		11.8.4 Eruptive Variables
		11.8.5 Peculiar Stars
		11.8.6 Planetary Nebulae
	11.9 Stellar Activity
		11.9.1 Stellar Activity and Convection
		11.9.2 Mass Loss of Stars
	11.10 Further Literature
	Tasks
12 Interstellar Matter
	12.1 Discovery, General Properties
		12.1.1 Discovery of Interstellar Matter
		12.1.2 Composition of Interstellar Matter
	12.2 Interstellar Dust
		12.2.1 Extinction
		12.2.2 Scattering
		12.2.3 Polarization
	12.3 Interstellar Gas
		12.3.1 Neutral Hydrogen
		12.3.2 Emission Nebulae, H-II Regions
		12.3.3 Special Emission Nebulae
		12.3.4 Light Echoes
	12.4 Cosmic Rays
		12.4.1 Discovery
		12.4.2 Composition and Origin
		12.4.3 Magnetic Fields and Charged Particles
		12.4.4 Solar Activity and Cosmic Rays
	12.5 Further Literature
	Tasks
13 The Galaxy
	13.1 Methods for Determining Distances
		13.1.1 Trigonometric Methods
		13.1.2 Photometric Standard Candles
	13.2 The Structure of Our Milky Way
		13.2.1 Rough Structure
		13.2.2 Galactic Coordinates
		13.2.3 Distribution of the Stars
		13.2.4 Galaxy: Components
		13.2.5 Local Solar Environment, Local Bubble
		13.2.6 Stellar Statistics
	13.3 Star Populations and Density Waves
		13.3.1 Star Populations
		13.3.2 Density Waves, Spiral Structure
	13.4 Rotation of the Galaxy
		13.4.1 Radial and Tangential Motion
		13.4.2 Galactic Rotation, LSR
		13.4.3 Galactic Rotation Curve
	13.5 Dark Matter in the Milky Way
		13.5.1 The Nature of Dark Matter
		13.5.2 Galactic Microlensing
	13.6 Galactic Center
		13.6.1 Definition of the Center
		13.6.2 Central Star Cluster and Black Hole
	13.7 Evolution of the Galaxy
		13.7.1 Theories to the Origin of the Spiral-Arms
		13.7.2 Age of the Galaxy and Magnetic Field
	13.8 Further Literature
	Tasks
14 Extragalactic Systems
	14.1 Classification
		14.1.1 Catalogues
		14.1.2 Hubble Classification
		14.1.3 Active Galaxies
		14.1.4 Other Classifications of Galaxies
	14.2 Discussion of the Individual Types
		14.2.1 Elliptical Galaxies, E
		14.2.2 Spiral Galaxies
		14.2.3 Irregular Galaxies
		14.2.4 Distribution Among the Types
		14.2.5 Integral Properties and Diameters
		14.2.6 The Magellanic Clouds
		14.2.7 Population Synthesis
	14.3 Supermassive Black Holes
		14.3.1 Detection of SMBHs
		14.3.2 SMBHs and Galaxy Properties
	14.4 Active Galaxies
		14.4.1 Active Galactic Nuclei
		14.4.2 Radio Galaxies
		14.4.3 Quasars
		14.4.4 Galaxies with High Red Shift
		14.4.5 Blazar
	14.5 Galaxy Clusters
		14.5.1 The Local Group
		14.5.2 Abell Catalogue of Galaxy Clusters
		14.5.3 Galaxy Collisions
		14.5.4 Super Cluster
		14.5.5 Special Galaxy Clusters
	14.6 Further Literature
	Tasks
15 Cosmology
	15.1 Expansion of the Universe
		15.1.1 View into the Past
		15.1.2 Olbers Paradox
		15.1.3 Galaxy Counts
		15.1.4 The Redshift of the Galaxies
		15.1.5 The Age of the Universe
		15.1.6 Homogeneity and Isotropy
		15.1.7 Methods of Distance Determination
	15.2 Newtonian cosmology
		15.2.1 Expansion
		15.2.2 Equation of Motion
		15.2.3 Conservation of Energy
	15.3 Theory of Relativity
		15.3.1 Special Theory of Relativity
		15.3.2 Four Vectors, Transformations
		15.3.3 General Theory of Relativity
		15.3.4 Matter and Space-Time Curvature
		15.3.5 Metric of the Space
		15.3.6 Friedmann-Lemaître Equations
		15.3.7 The Cosmological Constant and Vacuum Energy
		15.3.8 Gravitational Waves
	15.4 Dark Energy, Accelerated Expansion
		15.4.1 Observations
		15.4.2 Dark Energy
	15.5 The Early Universe
		15.5.1 Big Bang: Observational Hints
		15.5.2 Sunyaev-Zel'dovich Effect
		15.5.3 Acoustic Oscillations
		15.5.4 Formation of Particles
		15.5.5 Quarks and Quark-Gluon Plasma
		15.5.6 Particle Generation
	15.6 Symmetry Breaking in the Early Universe
		15.6.1 The Four Forces of Nature
		15.6.2 The Early Universe
		15.6.3 Inflationary Universe
		15.6.4 String Theory
		15.6.5 Quantum Foam
		15.6.6 Quantum Vacuum
		15.6.7 Loop Gravity, Quantum Loop Gravity
		15.6.8 The First Stars
		15.6.9 Parallel Universes
	15.7 Time Scale
	15.8 Further Literature
	Tasks
16 Astrobiology
	16.1 Life on Earth and in the Solar System
		16.1.1 What Is Life?
		16.1.2 Life on Earth
		16.1.3 Protective Shields for Life on Earth
		16.1.4 Life in the Solar System
	16.2 Discovery of Extrasolar Planetary Systems
		16.2.1 Astrometry
		16.2.2 Radial Velocity Method
		16.2.3 Light Curves, Transit Observations
		16.2.4 Microlensing
		16.2.5 Einstein-Beaming
		16.2.6 Earth-Based Observations
	16.3 Host Stars
		16.3.1 Hertzsprung-Russell Diagram
		16.3.2 Habitable Zone
		16.3.3 Examples
	16.4 Further Literature
	Tasks
17 Mathematical Methods
	17.1 Python-a Crash Course
		17.1.1 What Is Python?
		17.1.2 A First Simple Python Program
		17.1.3 Example: Brightness Measurements
	17.2 Statistics
		17.2.1 Mean Values
		17.2.2 Distribution Functions
		17.2.3 Moments
	17.3 Curve Fits and Correlation Calculation
		17.3.1 Fitting Curves, Least Squares Method
		17.3.2 Correlations
	17.4 Differential Equations
		17.4.1 First Order Linear Differential Equations
		17.4.2 Oscillator Equation
		17.4.3 Partial Differential Equations
	17.5 Numerical Mathematics
		17.5.1 Interpolation Polynomials
		17.5.2 Divided Differences
		17.5.3 Newton's Interpolation Method
		17.5.4 Interpolation with Unevenly Distributed Grid Points
		17.5.5 Numerical Differentiation
		17.5.6 Numerical Integration
		17.5.7 Numerical Solution of Differential Equations
	17.6 Fourier Methods
		17.6.1 Autocorrelation
		17.6.2 The Fast Fourier Transform, FFT
		17.6.3 Digital Filters
		17.6.4 Fourier Transforms in Optics
	17.7 Vector Calculus
		17.7.1 General
		17.7.2 Gradient, Divergence, Curl
		17.7.3 Applications
	17.8 Splines
	17.9 Special Software Packages
		17.9.1 The Ephem Program Package
		17.9.2 Calculation of the Light Curves of Exoplanet Transits
		17.9.3 Image Processing
		17.9.4 The File Format Fits
	17.10 Further Literature
	Tasks
A Appendix
	A.1 Literature
		A.1.1 General
		A.1.2 Journals
		A.1.3 Important Internet Addresses
		A.1.4 Software (Professional)
	A.2 Test Questions
	A.3 Tables




نظرات کاربران