دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بهینه سازی، تحقیق در عملیات. ویرایش: 3 نویسندگان: Urmila M. Diwekar سری: Springer Optimization and Its Applications, 22 ISBN (شابک) : 9783030554033 ناشر: Springer سال نشر: 2020 تعداد صفحات: 379 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Introduction to Applied Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر بهینه سازی کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهحلهای راهنمای راهحلها پس از پذیرش در دسترس است.
Solutions manual available upon adoptions.
Foreword Preface: Second Edition Preface: Third Edition Acknowledgments for the First Edition Contents List of Figures List of Tables Author Biography 1 Introduction 1.1 Problem Formulation: A Cautionary Note 1.2 Degrees of Freedom Analysis 1.3 Objective Function, Constraints, and Feasible Region 1.4 Numerical Optimization 1.5 Types of Optimization Problems 1.6 Summary Bibliography 2 Linear Programming 2.1 The Simplex Method 2.2 Infeasible Solution 2.3 Unbounded Solution 2.4 Multiple Solutions 2.5 Degeneracy in LP 2.6 Sensitivity Analysis 2.7 Other Methods 2.8 Hazardous Waste Blending Problem as an LP 2.9 Sustainable Mercury Management: An LP 2.9.1 Mercury Management Approach 2.9.2 Watershed Based Trading 2.9.3 Trading Optimization Model Formulation 2.9.4 Savannah River Watershed Details Technology Details Trading Details 2.9.5 LP Problem Details Industry Details Technology Details Results and Discussions 2.10 Summary Bibliography 3 Nonlinear Programming 3.1 Convex and Concave Functions 3.2 Unconstrained NLP 3.3 Necessary and Sufficient Conditions and Constrained NLP 3.4 Constraint Qualification 3.5 Sensitivity Analysis 3.6 Numerical Methods 3.7 Global Optimization and Interval Newton Method 3.8 What to Do When NLP Algorithm is Not Converging 3.9 Hazardous Waste Blending: An NLP 3.10 Sustainable Mercury Management: An NLP 3.11 Summary Bibliography 4 Discrete Optimization 4.1 Tree and Network Representation 4.2 Branch-and-Bound for IP 4.3 Numerical Methods for IP, MILP, and MINLP 4.4 Probabilistic Methods 4.5 Hazardous Waste Blending: A Combinatorial Problem 4.5.1 The OA-based MINLP Approach 4.5.2 The Two-Stage Approach with SA-NLP 4.5.3 A Branch-and-Bound Procedure 4.6 Sustainable Mercury Management: A Combinatorial Problem 4.7 Summary Bibliography 5 Optimization Under Uncertainty 5.1 Types of Problems and Generalized Representation 5.2 Chance Constrained Programming Method 5.3 L-shaped Decomposition Method 5.4 Uncertainty Analysis and Sampling 5.4.1 Specifying Uncertainty Using Probability Distributions 5.4.2 Sampling Techniques in Stochastic Modeling 5.4.3 Sampling Accuracy and the Decomposition Methods 5.4.4 Implications of Sample Size in Stochastic Modeling 5.5 Stochastic Annealing 5.6 Hazardous Waste Blending Under Uncertainty Characterization of Uncertainties in the Model 5.6.1 The Stochastic Optimization Problem 5.6.2 Results and Discussion 5.7 Sustainable Mercury Management: A Stochastic Optimization Problem 5.7.1 The Chance Constrained Programming Formulation Results and Discussions 5.7.2 A Two-stage Stochastic Programming Formulation Results and Discussions 5.8 Summary Bibliography 6 Multiobjective Optimization 6.1 Nondominated Set 6.2 Solution Methods 6.2.1 Weighting Method 6.2.2 Constraint Method 6.2.3 Goal Programming Method 6.3 Hazardous Waste Blending and Value of Research 6.3.1 Variance as an Attribute: The Analysis of Uncertainty 6.3.2 Base Objective: Minimization of Frit Mass 6.3.3 Robustness: Minimizing Variance 6.3.4 Reducing Uncertainty: Minimizing the Time Devoted to Research 6.3.5 Discussion: The Implications of Uncertainty 6.4 Sustainable Mercury Management: A Multiobjective Optimization Problem 6.4.1 Health Care Cost 6.4.2 The Multiobjective Optimization Formulation 6.5 Summary Bibliography 7 Optimal Control and Dynamic Optimization 7.1 Calculus of Variations 7.2 Maximum Principle 7.3 Dynamic Programming 7.4 Stochastic Processes and Stochastic Optimal Control 7.4.1 Ito's Lemma 7.4.2 Dynamic Programming Optimality Conditions 7.4.3 Stochastic Maximum Principle 7.5 Reversal of Blending: Optimizing a Separation Process 7.5.1 Calculus of Variations Formulation 7.5.2 Maximum Principle Formulation 7.5.3 Method of Steepest Ascent of Hamiltonian 7.5.4 Combining Maximum Principle and NLP Techniques 7.5.5 Uncertainties in Batch Distillation 7.5.6 Relative Volatility: An Ito Process 7.5.7 Optimal Reflux Profile: Deterministic Case 7.5.8 Case in Which Uncertainties Are Present 7.5.9 State Variable and Relative Volatility: The Two Ito Processes 7.5.10 Coupled Maximum Principle and NLP Approach for the Uncertain Case 7.6 Sustainable Mercury Management: An Optimal Control Problem 7.6.1 Mercury Bioaccumulation 7.6.2 Mercury pH Control Model 7.6.3 Deterministic Optimal Control Optimality Condition Adjoint Equations 7.6.4 Stochastic Optimal Control Optimality Condition Adjoint Equations 7.6.5 Results and Discussions Lake A 7.7 Summary Bibliography Appendix A Appendix B Index