دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: V. M. (Nitant) Kenkre
سری: Lecture Notes in Physics, 997
ISBN (شابک) : 3030948102, 9783030948108
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 327
[328]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Interplay of Quantum Mechanics and Nonlinearity: Understanding Small-System Dynamics of the Discrete Nonlinear Schrödinger Equation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تعامل مکانیک کوانتومی و غیرخطی: درک دینامیک سیستم های کوچک معادله شرودینگر غیرخطی گسسته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مطالعه عمیق از معادله غیرخطی شرودینگر گسسته (DNLSE) را با تأکید ویژه بر سیستمهای کوچک فضایی که اجازه حلهای تحلیلی را میدهند، ارائه میکند. در بسیاری از سیستمهای کوانتومی مورد علاقه معاصر، DNLSE در نتیجه توصیفات تقریبی با وجود خطی بودن اساسی مکانیک کوانتومی به وجود میآید. چنین سناریوهایی، که با فیزیک پولارون و تراکم بوز-اینشتین مثال می زنند، زمینه های کاربردی را برای ابزارهای نظری توسعه یافته در این متن فراهم می کنند. کتاب با مقدمه ای از DNLSE که با دایمر نشان داده شده است، توسعه ابزارهای تحلیلی اساسی مانند توابع بیضوی، و بینش های حاصل از آزمایش که اجازه می دهد شروع می شود. متعاقباً، تأثیر متقابل فاز کوانتومی اولیه با غیرخطی بودن مورد مطالعه قرار میگیرد، که منجر به پدیدههای جدیدی با پیامدهای قابل مشاهده در زمینههایی مانند دپلاریزاسیون فلورسانس از دایمرهای چوب، و به دنبال آن تجزیه و تحلیل سیستمهای پیچیدهتر و/یا بزرگتر میشود. نمونههای خاصی که در این کتاب مورد تجزیه و تحلیل قرار گرفتهاند عبارتند از: دایمر غیرخطی غیر منحط، به دام انداختن غیرخطی، پلارونهای چرخشی و دایمر غیرخطی غیرآدیاباتیک. پدیده های درمان شده شامل برهمکنش های قوی حامل-فونون و تراکم بوز-اینشتین است. این کتاب برای محققان و دانشجویان تحصیلات تکمیلی پیشرفته، با خلاصههای فصل و مشکلات برای آزمایش درک خواننده، همراه با کتابشناسی گسترده، هدف قرار گرفته است. خواندن این کتاب برای محققان ماده متراکم و فیزیک اتمی با دمای پایین، و همچنین هر دانشمندی که میخواهد بینشهای جالبی درباره نقش غیرخطی بودن در فیزیک کوانتوم داشته باشد، ضروری خواهد بود.
This book presents an in-depth study of the discrete nonlinear Schrödinger equation (DNLSE), with particular emphasis on spatially small systems that permit analytic solutions. In many quantum systems of contemporary interest, the DNLSE arises as a result of approximate descriptions despite the fundamental linearity of quantum mechanics. Such scenarios, exemplified by polaron physics and Bose-Einstein condensation, provide application areas for the theoretical tools developed in this text. The book begins with an introduction of the DNLSE illustrated with the dimer, development of fundamental analytic tools such as elliptic functions, and the resulting insights into experiment that they allow. Subsequently, the interplay of the initial quantum phase with nonlinearity is studied, leading to novel phenomena with observable implications in fields such as fluorescence depolarization of stick dimers, followed by analysis of more complex and/or larger systems. Specific examples analyzed in the book include the nondegenerate nonlinear dimer, nonlinear trapping, rotational polarons, and the nonadiabatic nonlinear dimer. Phenomena treated include strong carrier-phonon interactions and Bose-Einstein condensation. This book is aimed at researchers and advanced graduate students, with chapter summaries and problems to test the reader’s understanding, along with an extensive bibliography. The book will be essential reading for researchers in condensed matter and low-temperature atomic physics, as well as any scientist who wants fascinating insights into the role of nonlinearity in quantum physics.
Preface Outline of the Book Acknowledgments Contents About the Author 1 The Discrete Nonlinear Schrödinger Equation and the Two-State System (Dimer) 1.1 Introduction 1.2 A Numerical Study Indicating the Appearance of a Self-trapping Transition 1.3 Density Matrix Equations for a System of Very Small Size 1.4 Considerations via Potentials 1.5 Arming Oneself with Elliptic Functions 1.5.1 Definition of the Elliptic Sine and Related Functions 1.5.2 Some Useful Properties of the Jacobian Elliptic Functions 1.5.3 Trigonometric and Hyperbolic Approximations 1.5.4 Shifting the Elliptic Modulus 1.5.5 Jacobi's Imaginary Transformation 1.5.6 Weierstrass and Other Elliptic Functions 1.6 Application of Elliptic Functions to a Familiar System 1.6.1 The Displacement of the Physical Pendulum 1.6.2 The Angular Velocity of the Pendulum 1.7 Application to Bacterial Populations in a Petri Dish 1.8 Chapter 1 in Summary 2 Dimer Solutions, Mobility Reduction, and Neutron Scattering 2.1 Self-trapping as the cn-dn Transition 2.1.1 Kinship to Two Linear Systems 2.1.2 Reduction of Mobility from the DNLSE 2.2 Neutron Scattering Lineshapes 2.2.1 Introduction to the Experiment and Basic Formalism 2.2.2 Calculation of the Lineshape 2.2.3 Transition Behavior and Motional Narrowing 2.3 Comparison of the Motional Narrowing to the Linear Damped Result 2.4 Solution for Arbitrary Initial Conditions 2.5 Stationary States and Stability Analysis 2.6 Chapter 2 in Summary 3 Initial Delocalization, Phase-Nonlinearity Interplay, and Fluorescence Depolarization 3.1 Real Initial Conditions 3.1.1 In-Phase Case: r0 = +1-p02, Expected Behavior 3.1.2 Out-of-Phase Case: r0 = -1-p02, a New Transition 3.1.3 Meaning of the Amplitude Transition 3.2 Complex Initial Conditions 3.3 Fluorescence Depolarization in Stick Dimers 3.3.1 The Observable and Relation to the Dimer Density Matrix 3.3.2 Observable in the Absence of the DNSLE 3.3.3 Self-Trapping Effects on Fluorescence Depolarization 3.4 Chapter 3 in Summary 4 What Polarons Owe to Their Harmonic Origins 4.1 A Graphical Understanding of How the DNLSE Could Arise 4.2 Rotational Coordinates and Nonlinear Dependence 4.3 Surprises in the Dynamics of the Rotational Polaron 4.4 Non-monotonicity and Stationary States 4.4.1 Potential Considerations 4.4.2 Stationary States of the Rotational Polaron 4.4.3 Some General Comments 4.5 Further Work on the Nature of the Transitions and Additional Examples 4.5.1 General Considerations 4.5.2 Illustrative Applications for and Beyond Rotational Polarons 4.5.2.1 Rotational Polarons 4.5.2.2 Logarithmically Hard and Soft Oscillators 4.6 Chapter 4 in Summary 5 Static Energy Mismatch in the Nonlinear Dimer: Nondegeneracy 5.1 Evolution of the Nondegenerate Nonlinear Dimer 5.1.1 Potential Shapes and Physical Arguments to Gain Insight into the Time Dependence 5.2 Specifics of the Weierstrass Calculation 5.3 Analytic Results in Terms of Jacobian Functions 5.3.1 Jacobian Results 5.3.2 Reduction to the Case of the Degenerate Dimer 5.4 Systematic Study of the Effect of Nondegeneracy 5.4.1 Difference in Positive and Negative Static Mismatch in Site Energy 5.4.2 Graphical Perspective of Potential Plots 5.5 The Blend of Static and Dynamic Mismatch 5.6 Behavior at the Critical Point 5.7 Stationary States 5.8 Alternative Method for the Analysis of the Nonlinear Dimer 5.9 Chapter 5 in Summary 6 Extended Systems with Global Interactions, and Nonlinear Trapping 6.1 Trimers and N-mers with any Pair of Sites in Equal Communication 6.2 Rescaling to Connect the N-mer to the Nonlinear Nondegenerate Dimer 6.3 Additional Results from Considerations of N-mers 6.4 Nonlinear Trapping from a Linear Lattice Antenna 6.4.1 Arbitrary Initial Conditions, Analytic Solution 6.4.2 Stationary States of the Reaction Center 6.4.3 Dynamics for Initial Zero Occupation of the Reaction Center 6.5 Further Directions of Research and Remarks 6.6 Chapter 6 in Summary 7 Slow Relaxation: The Nonadiabatic Nonlinear Dimer 7.1 Preliminary Considerations 7.2 Relaxation at Finite Rates 7.3 Numerical Explorations 7.3.1 Localized Initial Conditions 7.3.2 Delocalized Initial Conditions 7.4 Some Exact Calculations in the Non-adiabatic Regime But in the Absence of Damping 7.4.1 The Essence of the Technique and Solutions 7.4.2 Tiptoeing Around Regions with Chaos 7.5 Averaging Approximation 7.6 Chapter 7 in Summary 8 Thermal Effects: Phase-Space and Langevin Formulations 8.1 Introduction: Background on the Davydov Soliton Stability Against Thermal Fluctuations 8.2 Phase-Space Considerations and Partition Function Analysis 8.2.1 Choice of Observable, Basic Expression, and Primary Behavior 8.2.2 Low Temperature Behavior 8.2.3 Extension Beyond the Dimer 8.3 Langevin/Fokker-Planck Analysis of Brownian Motion 8.3.1 Kramer's Escape Time as Representative of Thermal Stability 8.3.2 The Ecumenical Equation and Its Unification Capabilities 8.3.3 Onset of Bifurcations and Limit Cycles 8.3.4 Linear Stability Analysis 8.4 Bursts and Limit Cycles of Time-Dependent Fluorescence Depolarization 8.5 Remarks About the Non-equilibrium Considerations of Thermal Effects 8.6 Chapter 8 in Summary 9 Microscopic Origin Issues About the DNLSE for Polarons 9.1 Preliminary Concepts 9.1.1 Dressing Transformations and the Memory Function 9.1.2 Success of the Memory Approach 9.1.3 Nature of the Memory Function and Hierarchy of Time Scales 9.2 Criticism of the Semiclassical Treatment/DNLSE, Numerical Confirmation, and Timescale Hierarchy 9.3 Additional Investigations into the Validity Question 9.3.1 A Linear Four-State Model 9.3.2 Extreme Limits of the Transformation: Bare and Fully Dressed 9.3.3 An Infinite Number of Semiclassical Approximations 9.4 Relations to Other Approximation Programs 9.4.1 Leggett et al.'s Noninteracting Blip Approximation and Its Equivalence to our Memory Method 9.4.2 Grigolini's Analysis, Its Importance and Risks of Its Misinterpretation 9.5 A Brief Return to Davydov Solitons 9.6 Chapter 9 in Summary 10 Bose-Einstein Condensate Tunneling: The Gross-Pitaevskii Equation 10.1 A Lookalike of the DNLSE in Bose Einstein Condensate (BEC) Dynamics 10.2 Transitions and Tunneling in Condensates Analyzed via DNLSE Techniques 10.3 Validity of the DNLSE in the Light of Quantum Dynamics 10.3.1 Formulation of the Problem 10.3.2 Initial Condition Specification and the Numeric Exercise 10.4 Recent Results in Quantum Oscillations in BEC Condensates 10.4.1 Non-resonance Effects in the Time Evolution of Condensates 10.4.2 How to Make the Self-trapping Transition Coincide with the Amplitude Transition 10.4.3 Movement in Parameter Space of Critical Points and the Critical Line 10.5 Chapter 10 in Summary 11 Miscellaneous Topics and Summary of the Book 11.1 Assorted Subjects and Directions 11.1.1 Application of Projection Techniques to the Nonlinear Dimer: Generalized Master Equations 11.1.2 External Fields Considered via Time-dependent System Parameters 11.1.3 The Semiclassical Approximation for Anharmonic Vibrations 11.1.4 Boson-Fermion Mixtures and Soliton Propagation 11.1.5 Nonlinear Impurity in an Extended Chain 11.1.6 Excimer Formation as a Nonlinear Problem: A Classical Treatment 11.2 Review of Topics Covered in the Book 11.3 Parting Words 11.4 Chapter 11 in Summary References Index