دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [305, 1 ed.]
نویسندگان: Fausto Pedro García Márquez. Benjamin Lev
سری: International Series in Operations Research & Management Science
ISBN (شابک) : 3030704777, 9783030704773
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 320
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Internet of Things: Cases and Studies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت اشیا: موارد و مطالعات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book provides relevant theoretical frameworks and the latest empirical research findings of Operations Research/Management Science applied to Internet of Things. This book identifies and describes ways in which OR and MS have been applied and influenced the development of IoT. Examples are from smart industry; city; transportation; home and smart devices. It discusses future applications, trends, and potential benefits of this new discipline. It is written for professionals who want to improve their understanding of the strategic role of IoT at various levels of the organization, that is, IoT at the global economy level, at networks and organizations level, at teams and work groups, at information systems and, finally, IoT at the level of individuals, as players in the networked environments.
Preface Introduction Contents About the Editors 1 Blockchain as a Complementary Technology for the Internet of Things: A Survey 1.1 Introduction 1.2 Blockchain Technology 1.3 Blockchain for IoT 1.4 The Blockchain Consensus 1.4.1 Proof of Work 1.4.2 Byzantine Fault Tolerance 1.4.3 Proof of Stake 1.4.4 Hybrid Consensus 1.4.5 Tangle IOTA 1.4.6 Deep Learning Approaches 1.4.7 Soft Computing 1.5 Data Organisation and Consensus: Criticisms 1.6 Conclusion References 2 Enablers and Inhibitors for IoT Implementation 2.1 Introduction 2.2 Enablers and Barriers to Digitalization 2.2.1 Digitalization Process Elements 2.2.2 Enablers 2.2.2.1 Technology Enablers 2.2.2.2 Strategic Enablers 2.2.2.3 Organizational Enablers 2.2.3 Barriers 2.2.3.1 Organizational Barriers 2.2.3.2 Cultural Barriers 2.3 Enablers and Barriers to IoT Implementation 2.3.1 IoT Elements 2.3.2 Enablers 2.3.2.1 Technology Enablers 2.3.2.2 Strategic Enablers 2.3.2.3 Organizational Enablers 2.3.3 Barriers 2.3.3.1 Organizational Barriers 2.3.3.2 Cultural Barriers 2.4 Conclusions A.1 Annex 1 A.1.1 Summary of Main Concepts and Characteristics References 3 The Combination of AI, Blockchain, and the Internet of Things for Patient Relationship Management 3.1 Introduction 3.2 Related Work 3.3 The Model 3.3.1 The Data Structure 3.3.2 Federated Learning 3.3.3 Consensus 3.4 Architecture 3.5 Discussion 3.6 Conclusion References 4 Bibliometric Characteristics of Highly Cited Papers on Internet of Things Assessed with Essential Science Indicators 4.1 Introduction 4.2 Data and Methods 4.3 Results 4.3.1 Distributions of the IoT-HCPs 4.3.2 Productive Players 4.3.3 The Top 15 Most Cited Papers 4.3.4 Author Keyword Analysis 4.4 Conclusion References 5 A Macroeconomic Aspect of IoT Services: Their Marginal Costs 5.1 Introduction 5.2 Information and Business Models 5.3 A Model of IoT 5.4 Designing Incentives 5.5 Conclusions References 6 Biclustering Analysis of Countries Using COVID-19 Epidemiological Data 6.1 Introduction 6.2 Problem Description 6.2.1 Greedy Approach: Single Objective Size Maximization-Based Fitness Function 6.2.2 Data Description 6.3 Proposed Work: COVID-19 Pattern Identification Using Greedy Two-Way KMeans Algorithms 6.3.1 Optimize Biclusters Using Greedy Approach 6.4 Results 6.4.1 Suggestions 6.5 Conclusion References 7 IoT Applications in Healthcare 7.1 Introduction 7.2 IoT Applications for Acute Disease Care 7.2.1 Vital Sign Monitoring for the Emergency Department 7.2.2 Acute Care Telemedicine 7.2.3 IoT-Based Detection and Control of Infectious Diseases 7.3 IoT Applications for Chronic Disease Care 7.3.1 IoT Healthcare Applications for Alzheimer's Disease 7.3.2 IoT Healthcare Applications for Diabetes 7.3.3 IoT Healthcare Applications for Heart Failure 7.4 IoT Applications for Self-Health Management 7.4.1 Sleep and Exercise Monitoring Using Smartwatches 7.5 Conclusion References 8 An Interactive Visiting System Using BLE Devices 8.1 Introduction 8.2 Related Work 8.3 Prototype Architecture 8.3.1 Databases 8.3.2 Building Information Modelling (BIM) 8.3.3 Content Management System (CMS) 8.3.4 Mobile Application 8.3.5 BLE Devices 8.4 System Comparison and Discussion 8.5 Conclusions and Future Work References 9 Systematic Market and Asset Liquidity Risk Processes for Machine Learning: Robust Modeling Algorithms for Multiple-Assets Portfolios 9.1 Introduction and Overview 9.2 Literature Review and Motivation of Present Research 9.3 Modeling of Uncertainty with Robust Machine Learning Processes 9.3.1 Machine Learning Process for the Modeling of Uncertainty Using a Closed-Form Parametric VaR Algorithms 9.3.2 Machine Learning Process for the Modeling of Adverse Price Impact Using Al Janabi Model 9.3.3 Machine Learning Process for the Measurement of Transaction Costs 9.3.4 Machine Learning Process for the Computation of the Overall Risk Exposure 9.4 Practical Applications for Contemporary Portfolio Optimization and Selection and Risk Management 9.5 Concluding Remarks and Future Directions References 10 Context Modelling in Ambient Assisted Living: Trends and Lessons 10.1 Introduction 10.2 Ambient Assisted Living Services 10.2.1 Definition of AAL Services 10.2.2 Services for Inhabitants 10.2.3 Services for Caregiver 10.2.4 Basic Services 10.2.4.1 Activity Recognition 10.2.4.2 Posture Recognition 10.2.4.3 Localization 10.2.4.4 Predictive Services 10.3 Context Information and Context Awareness in AAL Systems 10.3.1 Contextual Information on Inhabitants 10.3.1.1 Static Information on Inhabitants 10.3.1.2 Dynamic Information on Inhabitants 10.3.2 Environmental Information 10.3.3 Physical Environmental Information 10.3.4 Social Environment 10.3.5 Temporal Information 10.3.6 Spatial Information 10.3.7 Delimiting the Context 10.3.8 Heterogeneity of Data 10.4 Approaches of Context Modelling in AAL Systems 10.4.1 Knowledge-Based Approaches 10.4.2 Data-Driven Approaches 10.4.3 Hybrid Approaches 10.4.4 Comparison Between Approaches 10.5 Discussion 10.5.1 Nature of Data 10.5.2 Visual Sensors 10.5.3 Biosensors 10.5.4 Activity, Body Posture and Fall Recognition Services 10.5.5 Predictive Services 10.5.6 Temporal Reasoning 10.5.7 Services for Inhabitants 10.6 Conclusion References 11 Design of Algorithm for IoT-Based Application: Case Study on Intelligent Transport Systems 11.1 Introduction 11.2 IoT Applications 11.3 Machine Learning and IoT in Transportation Research 11.4 Problem-Solving Techniques for IoT-Based Transportation 11.4.1 Time Series Analysis 11.4.2 Machine Learning Techniques 11.4.2.1 Supervised Learning 11.4.2.2 Unsupervised Learning 11.4.2.3 Reinforcement Learning 11.5 Traffic Sequence Mining Framework for Prediction of Traffic Volume on Highways 11.5.1 Problem Description 11.5.2 Methodology 11.5.3 Mining Frequent Traffic Sequence Rules 11.6 Learning Extreme Transportation Traffic Conditions Using Local and Global Instance-Based Regression 11.6.1 Problem Description 11.7 Dynamic Vehicle Routing 11.7.1 Problem Description 11.8 Discussion 11.9 Conclusion References 12 Examining Spatial Movement Patterns of Travelers: Cases in Tourist Destinations 12.1 Introduction 12.2 Attempts to Utilize IoT in Tourism 12.2.1 Extracting Location Data of People Through IoT 12.2.2 Tourism Research on Wi-Fi Tracking Sensors 12.3 Utilizing Mobile Kukan Toukei to Examine the Movement Patterns of Travelers 12.3.1 Identifying the Number of Travelers and Their Characteristics in Tourist Destinations in Nagoya City 12.3.2 The Results of the Survey Conducted in Nagoya City 12.4 Analyzing the Wi-Fi Tracking Sensor Data with Other Survey Data to Clarify Travelers' Movement Patterns 12.4.1 Analysis Overview 12.4.2 Widespread Travel Routes for Tourists within the Kyoto by the Sea Tourism Zone 12.4.3 Flow of Tourists Visiting Ine Town 12.4.4 Trends in the Use of Ine Town Parking Lot 12.4.5 Categorization of Tourism Based on Survey Response Data 12.4.6 Understanding Tourist Movements Through a Combination of Wi-Fi Tracking Data and Other Data 12.5 Conclusion 12.6 Future Research References 13 Use of UAVS, Computer Vision, and IOT for Traffic Analysis 13.1 Introduction 13.1.1 Road Safety in the Roundabouts 13.1.2 Accidents in Roundabouts 13.1.3 Objectives with IoT for Traffic Analysis 13.2 Case Study and Experimental Setup 13.2.1 Description 13.2.2 Speed Control 13.2.3 Hardware 13.2.3.1 The Air System 13.2.3.2 The Ground System 13.3 Methodology 13.3.1 Infrastructure Information 13.3.2 Information of Moving Vehicles 13.4 Results 13.4.1 Analysis of Trajectories 13.4.1.1 Trajectory 1 13.4.1.2 Trajectory 2 13.4.1.3 Trajectory 3 13.4.1.4 Trajectory 4 13.4.1.5 Trajectory 5 13.4.2 Analysis of Average Speeds 13.4.3 Analysis of Instantaneous Speeds 13.4.4 Vehicle Counting and Classification 13.4.5 Traffic Density Analysis 13.4.6 Trouble Spots Inside the Roundabout 13.5 Conclusions References Index