دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ganesan
سری:
ISBN (شابک) : 9781259006197
ناشر: McGraw-Hill Education
سال نشر: 2017
تعداد صفحات: 768
[765]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب INTERNAL COMBUSTION ENGINES به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب موتورهای احتراق داخلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Contents 1 Introduction 1.1 Energy Conversion 1.1.1 Definition of ‘Engine’ 1.1.2 Definition of ‘Heat Engine’ 1.1.3 Classification and Some Basic Details of Heat Engines 1.1.4 External Combustion and Internal Combustion Engines 1.2 Basic Engine Components and Nomenclature 1.2.1 Engine Components 1.2.2 Nomenclature 1.3 The Working Principle of Engines 1.3.1 Four-Stroke Spark-Ignition Engine 1.3.2 Four-Stroke Compression-Ignition Engine 1.3.3 Four-stroke SI and CI Engines 1.3.4 Two-Stroke Engine 1.3.5 Comparison of Four-Stroke and Two-Stroke Engines 1.4 Actual Engines 1.5 Classification of IC Engines 1.5.1 Cycle of Operation 1.5.2 Type of Fuel Used 1.5.3 Method of Charging 1.5.4 Type of Ignition 1.5.5 Type of Cooling 1.5.6 Cylinder Arrangements 1.6 Application of IC Engines 1.6.1 Two-Stroke Gasoline Engines 1.6.2 Two-Stroke Diesel Engines 1.6.3 Four-Stroke Gasoline Engines 1.6.4 Four-Stroke Diesel Engines 1.7 The First Law Analysis of Engine Cycle 1.8 Engine Performance Parameters 1.8.1 Indicated Thermal Efficiency (ηith) 1.8.2 Brake Thermal Efficiency (ηbth) 1.8.3 Mechanical Efficiency (ηm) 1.8.4 Volumetric Efficiency (ηv) 1.8.5 Relative Efficiency or Efficiency Ratio (ηrel) 1.8.6 Mean Effective Pressure (pm) 1.8.7 Mean Piston Speed (sp) 1.8.8 Specific Power Output (Ps) 1.8.9 Specific Fuel Consumption (sfc) 1.8.10 Inlet-Valve Mach Index (Z) 1.8.11 Fuel-Air (F/A) or Air-Fuel Ratio (A/F) 1.8.12 Calorific Value (CV ) 1.9 Design and Performance Data Worked out Examples Review Questions Exercise Multiple Choice Questions 2 Air-Standard Cycles and Their Analysis 2.1 Introduction 2.2 The Carnot Cycle 2.3 The Stirling Cycle 2.4 The Ericsson Cycle 2.5 The Otto Cycle 2.5.1 Thermal Efficiency 2.5.2 Work Output 2.5.3 Mean Effective Pressure 2.6 The Diesel Cycle 2.6.1 Thermal Efficiency 2.6.2 Work Output 2.6.3 Mean Effective Pressure 2.7 The Dual Cycle 2.7.1 Thermal Efficiency 2.7.2 Work Output 2.7.3 Mean Effective Pressure 2.8 Comparison of the Otto, Diesel and Dual Cycles 2.8.1 Same Compression Ratio and Heat Addition 2.8.2 Same Compression Ratio and Heat Rejection 2.8.3 Same Peak Pressure, Peak Temperature & Heat Rejection 2.8.4 Same Maximum Pressure and Heat Input 2.8.5 Same Maximum Pressure and Work Output 2.9 The Lenoir Cycle 2.10 The Atkinson Cycle 2.11 The Brayton Cycle Worked out Examples Review Questions Exercise Multiple Choice Questions 3 Fuel–Air Cycles and their Analysis 3.1 Introduction 3.2 Fuel–Air Cycles and their Significance 3.3 Composition of Cylinder Gases 3.4 Variable Specific Heats 3.5 Dissociation 3.6 Effect of Number of Moles 3.7 Comparison of Air–Standard and Fuel–Air Cycles 3.8 Effect of Operating Variables 3.8.1 Compression Ratio 3.8.2 Fuel–Air Ratio Worked out Examples Review Questions Exercise Multiple Choice Questions 4 Actual Cycles and their Analysis 4.1 Introduction 4.2 Comparison of Air-Standard and Actual Cycles 4.3 Time Loss Factor 4.4 Heat Loss Factor 4.5 Exhaust Blowdown 4.5.1 Loss Due to Gas Exchange Processes 4.5.2 Volumetric Efficiency 4.6 Loss due to Rubbing Friction 4.7 Actual and Fuel-Air Cycles of CI Engines Review Questions Multiple Choice Questions 5 Conventional Fuels 5.1 Introduction 5.2 Fuels 5.2.1 Solid Fuels 5.2.2 Gaseous Fuels 5.2.3 Liquid Fuels 5.3 Chemical Structure of Petroleum 5.3.1 Paraffin Series 5.3.2 Olefin Series 5.3.3 Naphthene Series 5.3.4 Aromatic Series 5.4 Petroleum Refining Process 5.5 Important Qualities of Engine Fuels 5.5.1 SI Engine Fuels 5.5.2 CI Engine Fuels 5.6 Rating of Fuels 5.6.1 Rating of SI Engine Fuels 5.6.2 Rating of CI Engine Fuels Review Questions Multiple Choice Questions 6 Alternate Fuels 6.1 Introduction 6.2 Possible Alternatives 6.3 Solid Fuels 6.4 Liquid Fuels 6.4.1 Alcohol 6.4.2 Methanol 6.4.3 Ethanol 6.4.4 Alcohol for SI Engines 6.4.5 Reformulated Gasoline for SI Engine 6.4.6 Water-Gasoline Mixture for SI Engines 6.4.7 Alcohol for CI Engines 6.5 Surface-Ignition Alcohol CI Engine 6.6 Spark-Assisted Diesel 6.7 Vegetable Oil 6.8 Biodiesel 6.8.1 Production 6.8.2 Properties 6.8.3 Environmental Effects 6.8.4 Current Research 6.9 Gaseous Fuels 6.9.1 Hydrogen 6.10 Hydrogen Engines 6.10.1 Natural Gas 6.10.2 Advantages of Natural Gas 6.10.3 Disadvantages of Natural Gas 6.10.4 Compressed Natural Gas (CNG) 6.10.5 Liquefied Petroleum Gas (LPG) 6.10.6 Advantages and Disadvantages of LPG 6.10.7 Future Scenario for LPG Vehicles 6.10.8 LPG (Propane) Fuel Feed System 6.11 Dual Fuel Operation 6.12 Other Possible Fuels 6.12.1 Biogas 6.12.2 Producer Gas 6.12.3 Blast Furnace Gas 6.12.4 Coke Oven Gas 6.12.5 Benzol 6.12.6 Acetone 6.12.7 Diethyl Ether Review Questions Multiple Choice Questions 7 Carburetion 7.1 Introduction 7.2 Definition of Carburetion 7.3 Factors Affecting Carburetion 7.4 Air–Fuel Mixtures 7.5 Mixture Requirements at Different Loads and Speeds 7.6 Automotive Engine Air–Fuel Mixture Requirements 7.6.1 Idling Range 7.6.2 Cruising Range 7.6.3 Power Range 7.7 Principle of Carburetion 7.8 The Simple Carburetor 7.9 Calculation of the Air–Fuel Ratio 7.9.1 Air–Fuel Ratio Neglecting Compressibility of Air 7.9.2 Air–Fuel Ratio Provided by a Simple Carburetor 7.9.3 Size of the Carburetor 7.10 Essential Parts of a Carburetor 7.10.1 The Fuel Strainer 7.10.2 The Float Chamber 7.10.3 The Main Metering and Idling System 7.10.4 The Choke and the Throttle 7.11 Compensating Devices 7.11.1 Air-bleed jet 7.11.2 Compensating Jet 7.11.3 Emulsion Tube 7.11.4 Back Suction Control Mechanism 7.11.5 Auxiliary Valve 7.11.6 Auxiliary Port 7.12 Additional Systems in Modern Carburetors 7.12.1 Anti-dieseling System 7.12.2 Richer Coasting System 7.12.3 Acceleration Pump System 7.12.4 Economizer or Power Enrichment System 7.13 Types of Carburetors 7.13.1 Constant Choke Carburetor 7.13.2 Constant Vacuum Carburetor 7.13.3 Multiple Venturi Carburetor 7.13.4 Advantages of a Multiple Venturi System 7.13.5 Multijet Carburetors 7.13.6 Multi-barrel Venturi Carburetor 7.14 Automobile Carburetors 7.14.1 Solex Carburetors 7.14.2 Carter Carburetor 7.14.3 S.U. Carburetor 7.15 Altitude Compensation 7.15.1 Altitude Compensation Devices Worked out Examples Review Questions Exercise Multiple Choice Questions 8 Mechanical Injection Systems 8.1 Introduction 8.2 Functional Requirements of an Injection System 8.3 Classification of Injection Systems 8.3.1 Air Injection System 8.3.2 Solid Injection System 8.3.3 Individual Pump and Nozzle System 8.3.4 Unit Injector System 8.3.5 Common Rail System 8.3.6 Distributor System 8.4 Fuel Feed Pump 8.5 Injection Pump 8.5.1 Jerk Type Pump 8.5.2 Distributor Type Pump 8.6 Injection Pump Governor 8.7 Mechanical Governor 8.8 Pneumatic Governor 8.9 Fuel Injector 8.10 Nozzle 8.10.1 Types of Nozzle 8.10.2 Spray Formation 8.10.3 Quantity of Fuel and the Size of Nozzle Orifice 8.11 Injection in SI Engine Worked out Examples Review Questions Exercise Multiple Choice Questions 9 Electronic Injection Systems 9.1 Introduction 9.2 Why Gasoline Injection? 9.2.1 Types of Injection Systems 9.2.2 Components of Injection System 9.3 Electronic Fuel Injection System 9.3.1 Merits of EFI System 9.3.2 Demerits of EFI System 9.4 Multi-Point Fuel Injection (MPFI) System 9.4.1 Port Injection 9.4.2 Throttle Body Injection System 9.4.3 D-MPFI System 9.4.4 L-MPFI System 9.5 Functional Divisions of MPFI System 9.5.1 MPFI-Electronic Control System 9.5.2 MPFI-Fuel System 9.5.3 MPFI-Air Induction System 9.6 Electronic Control System 9.6.1 Electronic Control Unit (ECU) 9.6.2 Cold Start Injector 9.6.3 Air Valve 9.7 Injection Timing 9.8 Group Gasoline Injection System 9.9 Electronic Diesel Injection System 9.10 Electronic Diesel Injection Control 9.10.1 Electronically Controlled Unit Injectors 9.10.2 Electronically Controlled Injection Pumps (Inline and Distributor Type) 9.10.3 Common-Rail Fuel Injection System Review Questions Multiple Choice Questions 10 Ignition 10.1 Introduction 10.2 Energy Requirements for Ignition 10.3 The Spark Energy and Duration 10.4 Ignition System 10.5 Requirements of an Ignition System 10.6 Battery Ignition System 10.6.1 Battery 10.6.2 Ignition Switch 10.6.3 Ballast Resistor 10.6.4 Ignition Coil 10.6.5 Contact Breaker 10.6.6 Capacitor 10.6.7 Distributor 10.6.8 Spark Plug 10.7 Operation of a Battery Ignition System 10.8 Limitations 10.9 Dwell Angle 10.10 Advantage of a 12 V Ignition System 10.11 Magneto Ignition System 10.12 Modern Ignition Systems 10.12.1 Transistorized Coil Ignition (TCI) System 10.12.2 Capacitive Discharge Ignition (CDI) System 10.13 Firing Order 10.14 Ignition Timing and Engine Parameters 10.14.1 Engine Speed 10.14.2 Mixture Strength 10.14.3 Part Load Operation 10.14.4 Type of Fuel 10.15 Spark Advance Mechanism 10.15.1 Centrifugal Advance Mechanism 10.15.2 Vacuum Advance Mechanism 10.16 Ignition Timing and Exhaust Emissions Review Questions Multiple Choice Questions 11 Combustion and Combustion Chambers 11.1 Introduction 11.2 Homogeneous Mixture 11.3 Heterogeneous Mixture 11.4 Combustion in Spark–Ignition Engines 11.5 Stages of Combustion in SI Engines 11.6 Flame Front Propagation 11.7 Factors Influencing the Flame Speed 11.8 Rate of Pressure Rise 11.9 Abnormal Combustion 11.10 The Phenomenon of Knock in SI Engines 11.10.1 Knock Limited Parameters 11.11 Effect of Engine Variables on Knock 11.11.1 Density Factors 11.11.2 Time Factors 11.11.3 Composition Factors 11.12 Combustion Chambers for SI Engines 11.12.1 Smooth Engine Operation 11.12.2 High Power Output and Thermal Efficiency 11.13 Combustion in Compression-Ignition Engines 11.14 Stages of Combustion in CI Engines 11.14.1 Ignition Delay Period 11.14.2 Period of Rapid Combustion 11.14.3 Period of Controlled Combustion 11.14.4 Period of After-Burning 11.15 Factors Affecting the Delay Period 11.15.1 Compression Ratio 11.15.2 Engine Speed 11.15.3 Output 11.15.4 Atomization and Duration of Injection 11.15.5 Injection Timing 11.15.6 Quality of Fuel 11.15.7 Intake Temperature 11.15.8 Intake Pressure 11.16 The Phenomenon of Knock in CI Engines 11.17 Comparison of Knock in SI and CI Engines 11.18 Combustion Chambers for CI Engines 11.18.1 Direct–Injection Chambers 11.18.2 Indirect–Injection Chambers Review Questions Multiple Choice Questions 12 Engine Friction and Lubrication 12.1 Introduction 12.1.1 Direct Frictional Losses 12.1.2 Pumping Loss 12.1.3 Power Loss to Drive Components to Charge and Scavenge 12.1.4 Power Loss to Drive the Auxiliaries 12.2 Mechanical Efficiency 12.3 Mechanical Friction 12.3.1 Fluid-film or Hydrodynamic Friction 12.3.2 Partial-film Friction 12.3.3 Rolling Friction 12.3.4 Dry Friction 12.3.5 Journal Bearing Friction 12.3.6 Friction due to Piston Motion 12.4 Blowby Losses 12.5 Pumping Loss 12.5.1 Exhaust Blowdown Loss 12.5.2 Exhaust Stroke Loss 12.5.3 Intake Stroke Loss 12.6 Factors Affecting Mechanical Friction 12.6.1 Engine Design 12.6.2 Engine Speed 12.6.3 Engine Load 12.6.4 Cooling Water Temperature 12.6.5 Oil Viscosity 12.7 Lubrication 12.7.1 Function of Lubrication 12.7.2 Mechanism of Lubrication 12.7.3 Elastohydrodynamic Lubrication 12.7.4 Journal Bearing Lubrication 12.7.5 Stable Lubrication 12.8 Lubrication of Engine Components 12.8.1 Piston 12.8.2 Crankshaft Bearings 12.8.3 Crankpin Bearings 12.8.4 Wristpin Bearing 12.9 Lubrication System 12.9.1 Mist Lubrication System 12.9.2 Wet Sump Lubrication System 12.9.3 Dry Sump Lubrication System 12.10 Crankcase Ventilation 12.11 Properties of Lubricants 12.11.1 Viscosity 12.11.2 Flash and Fire Points 12.11.3 Cloud and Pour Points 12.11.4 Oiliness or Film Strength 12.11.5 Corrosiveness 12.11.6 Detergency 12.11.7 Stability 12.11.8 Foaming 12.12 SAE Rating of Lubricants 12.12.1 Single-grade 12.12.2 Multi-grade 12.13 Additives for Lubricants 12.13.1 Anti-oxidants and Anticorrosive Agents 12.13.2 Detergent-Dispersant 12.13.3 Extreme Pressure Additives 12.13.4 Pour Point Depressors 12.13.5 Viscosity Index Improvers 12.13.6 Oiliness and Film Strength Agents 12.13.7 Antifoam Agents Review Questions Multiple Choice Questions 13 Heat Rejection and Cooling 13.1 Introduction 13.2 Variation of Gas Temperature 13.3 Piston Temperature Distribution 13.4 Cylinder Temperature Distribution 13.5 Heat Transfer 13.6 Theory of Engine Heat Transfer 13.7 Parameters Affecting Engine Heat Transfer 13.7.1 Fuel-Air Ratio 13.7.2 Compression Ratio 13.7.3 Spark Advance 13.7.4 Preignition and Knocking 13.7.5 Engine Output 13.7.6 Cylinder Wall Temperature 13.8 Power Required to Cool the Engine 13.9 Need for Cooling System 13.10 Characteristics of an Efficient Cooling System 13.11 Types of Cooling Systems 13.12 Liquid Cooled Systems 13.12.1 Direct or Non-return System 13.12.2 Thermosyphon System 13.12.3 Forced Circulation Cooling System 13.12.4 Evaporative Cooling System 13.12.5 Pressure Cooling System 13.13 Air–Cooled System 13.13.1 Cooling Fins 13.13.2 Baffles 13.14 Comparison of Liquid and Air–Cooling Systems 13.14.1 Advantages of Liquid-Cooling System 13.14.2 Limitations 13.14.3 Advantages of Air-Cooling System 13.14.4 Limitations Review Questions Multiple Choice Questions 14 Engine Emissions and Their Control 14.1 Introduction 14.2 Air Pollution due to IC Engines 14.3 Emission Norms 14.3.1 Overview of the Emission Norms in India 14.4 Comparison between Bharat Stage and Euro norms 14.5 Engine Emissions 14.5.1 Exhaust Emissions 14.6 Hydrocarbons (HC) 14.7 Hydrocarbon Emission 14.7.1 Incomplete Combustion 14.7.2 Crevice Volumes and Flow in Crevices 14.7.3 Leakage Past the Exhaust Valve 14.7.4 Valve Overlap 14.7.5 Deposits on Walls 14.7.6 Oil on Combustion Chamber Walls 14.8 Hydrocarbon Emission from Two-Stroke Engines 14.9 Hydrocarbon Emission from CI Engines 14.10 Carbon Monoxide (CO) Emission 14.11 Oxides Of Nitrogen (NOx) 14.11.1 Photochemical Smog 14.12 Particulates 14.13 Other Emissions 14.13.1 Aldehydes 14.13.2 Sulphur 14.13.3 Lead 14.13.4 Phosphorus 14.14 Emission Control Methods 14.14.1 Thermal Converters 14.15 Catalytic Converters 14.15.1 Sulphur 14.15.2 Cold Start-Ups 14.16 CI engines 14.16.1 Particulate Traps 14.16.2 Modern Diesel Engines 14.17 Reducing Emissions by Chemical Methods 14.17.1 Ammonia Injection Systems 14.18 Exhaust Gas Recirculation (EGR) 14.19 Non-Exhaust Emissions 14.19.1 Evaporative Emissions 14.19.2 Evaporation Loss Control Device (ELCD) 14.20 Modern Evaporative Emission Control System 14.20.1 Charcoal Canister 14.21 Crankcase Blowby 14.21.1 Blowby Control 14.21.2 Intake Manifold Return PCV System (Open Type) Review Questions Multiple Choice Questions 15 Measurements and Testing 15.1 Introduction 15.2 Friction Power 15.2.1 Willan’s Line Method 15.2.2 Morse Test 15.2.3 Motoring Test 15.2.4 From the Measurement of Indicated and Brake Power 15.2.5 Retardation Test 15.2.6 Comparison of Various Methods 15.3 Indicated Power 15.3.1 Method using the Indicator Diagram 15.3.2 Engine Indicators 15.3.3 Electronic Indicators 15.4 Brake Power 15.4.1 Prony Brake 15.4.2 Rope Brake 15.4.3 Hydraulic Dynamometer 15.4.4 Eddy Current Dynamometer 15.4.5 Swinging Field DC Dynamometer 15.4.6 Fan Dynamometer 15.4.7 Transmission Dynamometer 15.4.8 Chassis Dynamometer 15.5 Fuel Consumption 15.5.1 Volumetric Type Flowmeter 15.5.2 Gravimetric Fuel Flow Measurement 15.5.3 Fuel Consumption Measurement in Vehicles 15.6 Air Consumption 15.6.1 Air Box Method 15.6.2 Viscous-Flow Air Meter 15.7 Speed 15.8 Exhaust and Coolant Temperature 15.9 Emission 15.9.1 Oxides of Nitrogen 15.9.2 Carbon Monoxide 15.9.3 Unburned Hydrocarbons 15.9.4 Aldehydes 15.10 Visible Emissions 15.10.1 Smoke 15.11 Noise 15.12 Combustion Phenomenon 15.12.1 Flame Temperature Measurement 15.12.2 Flame Propagation 15.12.3 Combustion Process Review Questions Multiple Choice Questions 16 Performance Parameters and Characteristics 16.1 Introduction 16.2 Engine Power 16.2.1 Indicated Mean Effective Pressure (pim) 16.2.2 Indicated Power (ip) 16.2.3 Brake Power (bp) 16.2.4 Brake Mean Effective Pressure (pbm) 16.3 Engine Efficiencies 16.3.1 Air-Standard Efficiency 16.3.2 Indicated and Brake Thermal Efficiencies 16.3.3 Mechanical Efficiency 16.3.4 Relative Efficiency 16.3.5 Volumetric Efficiency 16.3.6 Scavenging Efficiency 16.3.7 Charge Efficiency 16.3.8 Combustion Efficiency 16.4 Engine Performance Characteristics 16.5 Variables Affecting Performance Characteristics 16.5.1 Combustion Rate and Spark Timing 16.5.2 Air-Fuel Ratio 16.5.3 Compression Ratio 16.5.4 Engine Speed 16.5.5 Mass of Inducted Charge 16.5.6 Heat Losses 16.6 Methods of Improving Engine Performance 16.7 Heat Balance 16.8 Performance Maps 16.8.1 SI Engines 16.8.2 CI Engines 16.9 Analytical Method of Performance Estimation Worked out Examples Review Questions Exercise Multiple Choice Questions 17 Engine Electronics 17.1 Introduction 17.2 Typical Engine Management Systems 17.3 Position Displacement and Speed Sensing 17.3.1 Inductive Transducers 17.3.2 Hall Effect Pickup 17.3.3 Potentiometers 17.3.4 Linear Variable Differential transformer (LVDT) 17.3.5 Electro Optical Sensors 17.4 Measurement of Pressure 17.4.1 Strain Gauge Sensors 17.4.2 Capacitance Transducers 17.4.3 Peizoelectric Sensors 17.5 Temperature Measurement 17.5.1 Thermistors 17.5.2 Thermocouples 17.5.3 Resistance Temperature Detector (RTD) 17.6 Intake air flow measurement 17.6.1 Hot Wire Sensor 17.6.2 Flap Type Sensor 17.6.3 Vortex Sensor 17.7 Exhaust Oxygen Sensor 17.7.1 Knock Sensor Review Questions Multiple Choice Questions 18 Supercharging 18.1 Introduction 18.2 Supercharging 18.3 Types Of Superchargers 18.3.1 Centrifugal Type Supercharger 18.3.2 Root’s Supercharger 18.3.3 Vane Type Supercharger 18.3.4 Comparison between the Three Superchargers 18.4 Methods of Supercharging 18.4.1 Electric Motor Driven Supercharging 18.4.2 Ram Effect of Supercharging 18.4.3 Under Piston Supercharging 18.4.4 Kadenacy System of Supercharging 18.5 Effects of Supercharging 18.6 Limitations to Supercharging 18.7 Thermodynamic Analysis of Supercharged Engine Cycle 18.8 Power Input for Mechanical Driven Supercharger 18.9 Gear Driven and Exhaust Driven Supercharging Arrangements 18.10 Turbocharging 18.10.1 Charge Cooling Worked out Examples Review Questions Exercise Multiple Choice Questions 19 Two-Stroke Engines 19.1 Introduction 19.2 Types of Two-Stroke Engines 19.2.1 Crankcase Scavenged Engine 19.2.2 Separately Scavenged Engine 19.3 Terminologies and Definitions 19.3.1 Delivery Ratio (Rdel) 19.3.2 Trapping Efficiency 19.3.3 Relative Cylinder Charge 19.3.4 Scavenging Efficiency 19.3.5 Charging Efficiency 19.3.6 Pressure Loss Coefficient (Pl) 19.3.7 Index for Compressing the Scavenge Air (n) 19.3.8 Excess Air Factor (λ) 19.4 Two-stroke Air Capacity 19.5 Theoretical Scavenging Processes 19.5.1 Perfect Scavenging 19.5.2 Perfect Mixing 19.5.3 Short Circuiting 19.6 Actual Scavenging Process 19.7 Classification Based on Scavenging Process 19.8 Comparison of Scavenging Methods 19.9 Scavenging Pumps 19.10 Advantages and Disadvantages of Two-stroke Engines 19.10.1 Advantages of Two-stroke Engines 19.10.2 Disadvantages of Two-Stroke Engines 19.11 Comparison of Two-stroke SI and CI Engines Worked out Examples Review Questions Exercise Multiple Choice Questions 20 Nonconventional Engines 20.1 Introduction 20.2 Common Rail Direct Injection Engine 20.2.1 The Working Principle 20.2.2 The Injector 20.2.3 Sensors 20.2.4 Electronic Control Unit (ECU) 20.2.5 Microcomputer 20.2.6 Status of CRDI Engines 20.2.7 Principle of CRDI in Gasoline Engines 20.2.8 Advantages of CRDI Systems 20.3 Dual Fuel and Multi-Fuel Engine 20.3.1 The Working Principle 20.3.2 Combustion in Dual-Fuel Engines 20.3.3 Nature of Knock in a Dual-Fuel Engine 20.3.4 Weak and Rich Combustion Limits 20.3.5 Factors Affecting Combustion in a Dual-Fuel Engine 20.3.6 Advantages of Dual Fuel Engines 20.4 Multifuel Engines 20.4.1 Characteristics of a Multi-Fuel Engine 20.5 Free Piston Engine 20.5.1 Free-Piston Engine Basics 20.5.2 Categories of Free Piston Engine 20.5.3 Single Piston 20.5.4 Dual Piston 20.5.5 Opposed Piston 20.5.6 Free Piston Gas Generators 20.5.7 Loading Requirements 20.5.8 Design Features 20.5.9 The Combustion Process 20.5.10 Combustion Optimization 20.5.11 Advantages and Disadvantages of Free Piston Engine 20.5.12 Applications of Free Piston Engine 20.6 Gasoline Direct Injection Engine 20.6.1 Modes of Operation 20.7 Homogeneous Charge Compression Ignition Engine 20.7.1 Control 20.7.2 Variable Compression Ratio 20.7.3 Variable Induction Temperature 20.7.4 Variable Exhaust Gas Percentage 20.7.5 Variable Valve Actuation 20.7.6 Variable Fuel Ignition Quality 20.7.7 Power 20.7.8 Emissions 20.7.9 Difference in Engine Knock 20.7.10 Advantages and Disadvantages of HCCI Engine 20.8 Lean Burn Engine 20.8.1 Basics of Lean Burn Technology 20.8.2 Lean Burn Combustion 20.8.3 Combustion Monitoring 20.8.4 Lean Burn Emissions 20.8.5 Fuel Flexibility 20.8.6 Toyota Lean Burn Engine 20.8.7 Honda Lean Burn Systems 20.8.8 Mitsubishi Ultra Lean Burn Combustion Engines 20.9 Stirling Engine 20.9.1 Principle of Operation 20.9.2 Types of Stirling Engines 20.9.3 Alpha Stirling Engine 20.9.4 Working Principle of Alpha Stirling Engine 20.9.5 Beta Stirling Engine 20.9.6 Working Principle of Beta Stirling Engine 20.9.7 The Stirling Cycle 20.9.8 Displacer Type Stirling Engine 20.9.9 Pressurization 20.9.10 Lubricants and Friction 20.9.11 Comparison with Internal Combustion Engines 20.9.12 Advantages and Disadvantages of Stirling Engine 20.9.13 Applications 20.9.14 Future of Stirling Engines 20.10 Stratified Charge Engine 20.10.1 Advantages of Burning Leaner Overall Fuel-Air Mixtures 20.10.2 Methods of Charge Stratification 20.10.3 Stratification by Fuel Injection and Positive Ignition 20.10.4 Volkswagen PCI stratified charge engine 20.10.5 Broderson Method of Stratification 20.10.6 Charge Stratification by Swirl 20.10.7 Ford Combustion Process (FCP) 20.10.8 Ford PROCO 20.10.9 Texaco Combustion Process (TCP) 20.10.10 Witzky Swirl Stratification Process 20.10.11 Honda CVCC Engine 20.10.12 Advantages and Disadvantages of Stratified Charge Engines 20.11 Variable Compression Ratio Engine 20.11.1 Cortina Variable Compression Engine 20.11.2 Cycle Analysis 20.11.3 The CFR Engine 20.11.4 Performance of Variable Compression Ratio Engines 20.11.5 Variable Compression Ratio Applications 20.12 Wankel Engine 20.12.1 Basic Design 20.12.2 Comparison of Reciprocating and Wankel Rotary Engine 20.12.3 Materials 20.12.4 Sealing 20.12.5 Fuel consumption and emissions 20.12.6 Advantages and Disadvantages of Wankel Engines Review Questions Multiple Choice Questions Index