دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: منطق ویرایش: نویسندگان: F. R. Drake, D. Singh سری: ISBN (شابک) : 0471964948, 9780471964940 ناشر: Wiley سال نشر: 1996 تعداد صفحات: 243 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Intermediate Set Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه مجموعه های متوسط نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نویسندگان منطق مرتبه اول و موضوعات اصلی نظریه مجموعه ها را در یک سبک ریاضی واضح با بحث فلسفی معقول پوشش می دهند. تاکید بر ارائه استفاده از نظریه مجموعه ها در زمینه های مختلف ریاضیات است، با توجه خاص به معرفی نظریه مجموعه های بدیهی، نشان دادن اینکه چگونه بدیهیات در عمل ریاضی مورد نیاز هستند و چگونه به وجود می آیند. حوزه های دیگر معرفی شده عبارتند از اصل انتخاب، فیلترها و ایده آل ها. تمرین هایی ارائه شده است که هم برای دانش آموزان مبتدی و هم برای دانش آموزان سطح مدرک مناسب است.
The authors cover first order logic and the main topics of set theory in a clear mathematical style with sensible philosophical discussion. The emphasis is on presenting the use of set theory in various areas of mathematics, with particular attention paid to introducing axiomatic set theory, showing how the axioms are needed in mathematical practice and how they arise. Other areas introduced include the axiom of choice, filters and ideals. Exercises are provided which are suitable for both beginning students and degree-level students.
Preface ......Page 7
1.1 Cantor’s contribution ......Page 9
1.2 Cantor’s concept of a set ......Page 11
1.3 Paradoxes ......Page 13
1.4 Type structures ......Page 15
1.5 Culmination into axiomatics ......Page 18
2.1 Introduction ......Page 21
2.2 The syntax of LST ......Page 22
2.3 Proofs and derivations in LST ......Page 26
2.4 Semantics of LST ......Page 27
2.5 Adding new terms ......Page 32
3.1 The Zermelo-Fraenkel axioms ......Page 35
3.2 Arguments for these axioms ......Page 39
4.1 Countable sets ......Page 45
4.2 Uncountable sets ......Page 49
4.3 The arithmetic of cardinal numbers ......Page 54
5.1 Orderings ......Page 59
5.2 Some properties of ordered sets ......Page 61
5.3 Lattices and Boolean algebras ......Page 64
5.4 Well-ordered sets ......Page 74
6.1 The natural numbers ......Page 79
6.2 The Peano axioms for the natural numbers ......Page 84
6.3 The rational numbers ......Page 93
6.4 The real numbers ......Page 97
6.5 Ordinals in ZF: basic properties ......Page 101
6.6 Transfinite induction ......Page 105
6.7 Cardinals as initial ordinals ......Page 113
7.1 Simple forms ......Page 117
7.2 The well-ordering theorem ......Page 120
7.3 Maximal principles and Zorn’s lemma ......Page 122
7.4 Simple consequences of the axiom of choice ......Page 125
8 Constructible sets and forcing ......Page 135
8.1 Godel’s constructible sets ......Page 136
8.2 The definition of L ......Page 141
8.3 Reflection principles ......Page 146
8.4 Properties of L ......Page 148
8.5 The axiom of choice in L ......Page 153
8.6 The generalized continuum hypothesis in L ......Page 156
8.7 Another presentation ......Page 161
8.8 Forcing models ......Page 162
8.9 Forcing in practice: the ZFC axioms hold in M[G] ......Page 167
8.10 Forcing in practice: some models ......Page 172
8.11 Proofs of the definability and truth lemmas ......Page 179
8.12 Models for the independence of the axiom of choice ......Page 187
8.13 A model with a Dedekind-finite set ......Page 192
8.14 Boolean-valued models: another presentation ......Page 197
9.2 System VNB ......Page 201
9.3 System MK ......Page 205
9.4 Axioms of extent ......Page 207
9.5 Other presentations of set theory ......Page 210
9.6 Remarks on the philosophy of mathematics ......Page 215
10.1 Simplest constructions, and variants ......Page 221
10.2 Ordered pairs, relations, functions, families and sequences ......Page 222
References ......Page 227
Index ......Page 233