دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Hung Cao (editor), Todd Coleman (editor), Tzung K. Hsiai (editor), Ali Khademhosseini (editor) سری: ISBN (شابک) : 3030344665, 9783030344665 ناشر: Springer سال نشر: 2020 تعداد صفحات: 240 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Interfacing Bioelectronics and Biomedical Sensing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رابط بیوالکترونیک و سنجش زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Challenges in the Design of Large-Scale, High-Density, Wireless Stimulation and Recording Interface 1 Introduction 2 Cancellation of Artifacts During Simultaneous Neural Stimulation and Recording 2.1 Stimulation Artifact Cancellation by Circuit Design 2.2 Stimulation Artifact Cancellation by Digital Signal Processing 2.3 Stimulation Artifact Cancellation by a Complete System Design 3 Focalized Stimulation 4 High-Density Electrode Array 4.1 Scaling Trend of Neural Interfaces 4.2 Actively Multiplexed, Flexible Electrode Arrays 4.2.1 Rationale and Concept 4.2.2 Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Chronic Electrophysiology 5 Gigabit Wireless Link 5.1 Design Consideration 5.1.1 Bandwidth/Data Rate Requirement 5.1.2 Power Constraint 5.1.3 Transmission Distance 5.2 State-of-the-Art Gigabit Wireless Telemetry 5.3 High-Density Gigabit Wireless Neural Recording System 6 Future Large-Scale, High-Density Wireless Stimulation and Recording System 6.1 System Architecture 6.2 Outlook References Advances in Bioresorbable Electronics and Uses in Biomedical Sensing 1 Introduction to Bioresorbable Electronics 1.1 Motivation and Classification 1.2 Background 2 Overview and Advancements of Constituent Resorbable Materials 2.1 Conductor 2.1.1 Inorganic 2.1.2 Organic 2.2 Semiconductor 2.2.1 Inorganic 2.2.2 Organic 2.3 Insulator: Dielectric 2.3.1 Inorganic 2.3.2 Organic 2.4 Insulator: Substrate 2.4.1 Inorganic 2.4.2 Organic 2.5 Insulator: Encapsulation Layer 2.5.1 Inorganic 2.5.2 Organic 3 Applications in Biomedical Engineering 3.1 Energy Supply 3.1.1 Batteries 3.1.2 Mechanical Energy Harvesters 3.1.3 Microsupercapacitors 3.2 Biosensing 3.2.1 Electrophysiologic Monitoring 3.2.2 Environmental Sensing 3.2.3 Elastic Sensors for Electrophysical, Chemical, and Mechanical Sensing 3.3 Therapeutics 3.3.1 Heat-Stimulated Drug Release 3.3.2 Tissue Regeneration 3.3.3 Multifunctional Therapies 4 Summary and Outlook References Inorganic Dissolvable Bioelectronics 1 Introduction 2 Materials 2.1 Semiconductors 2.2 Conductors 2.3 Insulators 3 Manufacturing Processes 4 Functional Components and Systems 4.1 Power Supply Components 4.2 Functional Transformation and Active Control 4.3 Biomedical Implants 5 Conclusion and Future Perspective References Wirelessly Powered Medical Implants via Radio Frequency 1 Introduction 1.1 Near-Field WPT 1.2 Batteryless Direct Stimulation 1.3 Battery-Based Stimulation 1.4 Remote-Controlled Stimulation 1.5 Multi-coil Stimulation 2 Far-Field WPT 3 Midfield WPT 4 Future Directions and Conclusion References Electrocardiogram: Acquisition and Analysis for Biological Investigations and Health Monitoring 1 Introduction 1.1 Background 1.2 The Studied Animal Model: Zebrafish 1.3 Electrocardiogram 1.4 The Structure of This Chapter 2 The Nature of Electrocardiogram (ECG) 2.1 Pacemaker Action Potential 2.2 Cardiomyocyte Action Potential 2.3 Electrophysiological Pathway of the Cardiac System, the ECG 3 ECG Acquisition Methods 3.1 Contact Electrode 3.1.1 Wet Electrode 3.1.2 Dry Electrode 3.2 Noncontact Electrodes (NCE) 4 ECG Acquisition, Processing, and Analysis in Zebrafish 4.1 Microelectrode Array (MEA) Membranes 4.2 Simple-Yet-Novel Housing for ECG Measurement of Awake Zebrafish 4.3 Zebrafish ECG Analysis 5 ECG monitoring in humans 6 Discussion and Outlook 6.1 Current Wearable Technology 6.2 Connecting Findings in Animal Research with Diagnosis and Prognosis in Humans 6.3 The Promise of Artificial Intelligence 7 Conclusion References Flexible Intravascular EIS Sensors for Detecting Metabolically Active Plaque 1 Introduction 1.1 Atherosclerosis 1.2 Electrochemical Impedance Spectroscopy and Its Relevance to Atherosclerosis 1.3 Equivalent Circuit Model for EIS 2 Electrochemical Impedance Spectroscopy Implementation 2.1 Four-Point EIS 2.2 Concentric Bipolar Electrodes (CBE) 2.3 CBE for In Vivo Animal Study 2.4 Two-Point Symmetric Configuration 2.5 3-D EIS Interrogation in NZW Rabbit Model 3 Conclusion and Future Outlook References Epidermal EIT Electrode Arrays for Cardiopulmonary Application and Fatty Liver Infiltration 1 Introduction 1.1 Fundamental Principle of EIT 1.2 Nonlinear Inverse Problem for EIT Imaging 1.3 EIDORS Open-Source Tools 2 EIT for Cardiopulmonary Application 2.1 Motivation 2.2 EIT in Mechanically Ventilated Patients During Surgery or ICU 2.3 EIT for Pulmonary Perfusion 2.4 EIT for Acute Respiratory Distress Syndrome (ARDS) 2.5 EIT in Chronic Obstructive Pulmonary Diseases (COPD) 2.6 EIT in Cystic Fibrosis (CF) 2.7 Discussion and Outlook 3 EIT for Liver Fat Infiltration 3.1 Motivation 3.2 Simulation Study 3.2.1 Change of Geometric Boundaries 3.2.2 Change in the Size of the Liver 3.3 NZW Rabbit Model 3.4 EIT for Clinical Translation 3.5 Discussion and Outlook for EIT in Liver Fat Infiltration 4 Conclusion and Future Direction References High-Frequency Ultrasonic Transducers to Uncover Cardiac Dynamics 1 High-Frequency Ultrasonic Transducers 2 Emerging Applications for Small Animal Models 2.1 High-Frequency Transducer for Mouse 2.2 High-Frequency Transducer for Zebrafish References Minimally Invasive Technologies for Biosensing 1 Introduction 2 Point-of-Care Devices 3 Wearable Biosensors 4 Minimally Invasive Sensing with Wearable Biosensors 4.1 Biomarker Sensing 4.2 Electrophysiological Sensing 5 Edible Biosensors 6 Microneedle-Based Biosensors 7 Smart Bandages 8 Conclusion and Outlook References Index