دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kheng Lim Goh (editor)
سری:
ISBN (شابک) : 008102665X, 9780081026656
ناشر: Woodhead Publishing
سال نشر: 2019
تعداد صفحات: 553
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices (Woodhead Publishing Series in Composites Science and Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رابطها در کامپوزیتهای تقویتشده با ذرات و فیبر: دیدگاههای کنونی در زمینه پلیمر، سرامیک، فلز و ماتریسهای خارج سلولی (مجموعه انتشارات Woodhead در علم و مهندسی کامپوزیت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
رابطها در کامپوزیتهای تقویتشده با ذرات و فیبر: از مقیاس ماکرو تا نانومقیاس به یافتههای تحقیقاتی اخیر در رابطه با ماتریس ذره در مقیاسهای طولی مختلف میپردازد. تمرکز اصلی کتاب بر تقویت مواد توسط ذرات است که میتواند منجر به یک ماده مرکب با سفتی و استحکام بالا شود، اما همچنین بر نحوه تعامل ذره با ماده (ماتریکس) تمرکز دارد که ممکن است یک پلیمر مبتنی بر بیولوژیک باشد. مواد، سرامیک یا فلز معمولی. انواع مختلف کامپوزیت های تقویت شده با ذرات، و همچنین انتقال بار در رابط ذره-ماتریس مورد بحث قرار می گیرند. خوانندگان نحوه انتخاب مواد و ساختار ذرات را یاد خواهند گرفت.
پیشرفت قابل توجهی در به کارگیری این رویکردها حاصل شده است، بنابراین این کتاب به عنوان مقاله ای به موقع در مورد یافته های تحقیقاتی اخیر در مورد رابط ذره-ماتریس در مقیاس های طولی مختلف تبدیل شده است. .
Interfaces in Particle and Fibre-Reinforced Composites: From Macro- to Nanoscale addresses recent research findings on the particle-matrix interface at different length scales. The book's main focus is on the reinforcement of materials by particles that can result in a composite material of high stiffness and strength, but it also focuses on how the particle interacts with the (matrix) material, which may be a polymer, biological-based material, ceramic or conventional metal. The different types of particle reinforced composites are discussed, as is load transfer at the particle-matrix interface. Readers will learn how to select materials and about particle structure.
Significant progress has been made in applying these approaches, thus making this book a timely piece on recent research findings on the particle-matrix interface at different length scales.
Cover Interfaces in Particle and Fibre Reinforced CompositesCurrent Perspectives on Polymer, Ceramic, Metal and Extracellular Mat ... Copyright Contributors Foreword References Acknowledgements 1. Introduction References Part One: General perspectives 2. Structured interfaces and their effect on composite performance: computational studies1 1. Introduction 2. Biological materials and interface effects 2.1 Nanostructures in nacre 2.2 Multiscale structure of timber 3. Composites and nanocomposites: computational modeling of the effect of interfaces on the mechanical properties 3.1 Interfaces and fiber sizing in fiber reinforced composites 3.2 Nanoclay/polymer interface and region of perturbed structure around the clay: effective interfaces model 3.3 Hierarchical fiber reinforced composites with nanoeingineered interfaces 4. Nanocrystalline metals: grain boundaries and their effect on the mechanical properties 4.1 Ultrafine grained titanium: effect of dislocation density and non-equilibrium state of grain boundaries 4.2 Precipitates in grain boundaries of UFG metals 5. Conclusions Acknowledgements References 3. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matri ... 1. Introduction 2. Natural fibres 3. Chemical composition of natural fibre 4. Microstructure of fibre 5. Nanostructure of fibre 6. Mechanical properties of nanocellulose 7. Processing of polymer composites 8. Theories of adhesion and type of bonding 9. Physio-chemical characterisation of interphase 10. Effect of fibre loading, size, and biopolymer composite composition (variable parameters) on mechanical properties 10.1 Tensile strength 10.2 Flexural strength 10.3 Impact strength 11. Effect of fibre loading, size, and biopolymer composite composition on physical properties 11.1 Water absorption 11.2 Thickness swelling 11.3 Density 12. Morphological analysis of fibre and matrix interfacial bonding by using scanning electron microscope (SEM) 12.1 Analysis on the effect of treated fibre adhesion on matrix composite 12.2 Analysis on the effect of fibre loading on matrix composites 12.3 Analysis on the effect of matrix adhesion on untreated fibre 13. Thermal gravimetric analysis (TGA) on types of fibre and matrix composites 13.1 Effect of various fibre loadings on TGA 13.2 Effect of various matrix composites on TGA 13.3 Effect of thermal degradation on various fibres and matrices 13.4 Residue effect on various fibre and matrix composites 14. Effect of nanoparticle size, nanoparticle/matrix interface adhesion and nanoparticle loading on the mechanical properties o ... 14.1 Young's modulus and tensile strength 14.2 Effect of particle size 14.3 Effect of particle loading 14.4 Effect of nanocellulose/matrix interfacial adhesion 14.5 Effect of nanocellulose in a starch matrix 14.6 Effect of various sources of nanocellulose reinforced biopolymer 15. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) 16. Fourier transform infrared (FTIR) spectroscopy 17. X-ray diffraction (XRD) 18. Nuclear magnetic resonance (NMR) spectroscopy 19. Measurement of contact angle 20. Raman spectroscopy (RS) 21. Concluding remarks References 4. Filler matrix interfaces of inorganic/biopolymer composites and their applications 1. Introduction 2. Filler-matrix interface of polymer composite 3. Common types of biopolymer composites 3.1 Metal based biopolymer composites 3.2 Metal oxide based biopolymer composites 3.3 Carbon based biopolymer composites 3.4 Other biopolymer composites 4. Practical applications of biopolymer composites 5. Conclusions References Part Two: Polymer matrix 5. A critical role of interphase properties and features on mechanical properties of poly(vinyl alcohol) (PVA) bionanocomposit ... 1. Introduction 2. Materials 3. PVA/NBC bionanocomposite fabrication 4. Characterisation techniques 5. Results and discussion 5.1 Particle size and elastic modulus of NBCs 5.2 Nanomechanical properties of PVA/NBC bionanocomposites 5.3 Interphase characterisation of PVA/NBC bionanocomposites 5.3.1 Modelling approach 5.3.2 Interphase elastic properties 5.4 Interphase dimensions 6. Conclusions Acknowledgements References 6. Effect of nanoclay filler on mechanical and morphological properties of Napier/ epoxy composites 1. Introduction 2. Natural fibre 3. Napier grass fibre 4. Natural fibre reinforced epoxy composites 5. Nanoclay reinforced composites 6. Nanoclay filled Napier/epoxy composites 7. Fabrication and flexure test of nanoclay filled Napier/epoxy composites 8. Flexural strength and modulus of nanoclay filled Napier/epoxy composites 9. Morphology of nanoclay filled Napier reinforced epoxy composites 10. Conclusion References 7. A review on the interfacial characteristics of natural fibre reinforced polymer composites 1. Introduction 2. Types of fibre and matrix 3. Interfacial characterisation methods 4. Effects of the types of fibres and matrix 5. Effects of fibre extraction method 6. Effects of fibre embedded length 7. Effects of fibre surface treatment 8. Effects of strain rate 9. Effects of environmental attack 10. Conclusions and future recommendations Acknowledgements References 8. Interfaces in sugar palm fibres reinforced composites: A review 1. Introduction 2. Classification and structures of sugar palm fibres 2.1 Chemical compositions and properties of sugar palm fibres 2.2 Sugar palm particles reinforced composites 2.2.1 Physical properties 2.2.2 Mechanical properties 2.2.2.1 Sugar palm particle reinforced thermoset matrices 2.2.2.2 Sugar palm particle reinforced thermoplastic matrices 2.2.3 Thermal properties 3. Research methodology 3.1 Fibre modification 3.2 Chemical modification 3.2.1 Alkaline treatments 3.2.2 Silane treatment 3.2.3 Seawater treatment 3.3 Characterization methods 3.4 Scanning electron microscope 3.5 Atomic force microscope 3.6 X-Ray photo electron spectroscope 3.7 Applications and challenges 4. Conclusion Acknowledgements References 9 - Characterization studies of polymer-based composites related to functionalized filler-matrix interface 1. Introduction 1.1 Classification of polymers 2. Classifications based on application 2.1 Polymer composite 2.2 Types of polymer composites 2.2.1 Particulate reinforced composites 2.2.2 Fiber reinforced composites 2.2.3 Hybrid composites 2.2.4 Laminates 2.3 Polymer nanocomposites 3. Effects of additives on composite 3.1 Reinforcements 3.2 Fillers 3.3 Different types of fillers 3.3.1 Natural and renewable fillers 3.3.2 Zeolites 3.3.3 Dense fillers 3.3.4 Expandable microspheres 3.3.5 Nano-fillers 3.3.5.1 Cellulose-based nanofillers 3.3.5.2 Clay 3.3.6 Molecular fillers 3.3.7 Functional fillers 4. Characterization of polymer composites for filler matrix interface 4.1 SEM and TEM analysis 4.2 Atomic force microscopy (AFM) 4.3 Thermal analysis 4.3.1 Differential scanning calorimetry (DSC) 4.3.2 Thermogravimetric analysis (TGA) 4.4 X-ray diffraction (XRD) 4.5 FTIR analysis 4.6 XPS analysis 5. Conclusions Acknowledgements References 10. Performance of 3D printed poly(lactic acid)/halloysite nanocomposites 1. Introduction 2. Materials and methods 2.1 Overview 2.2 Materials 2.3 Fabrication of PLA-based nanocomposite filaments by melt compounding 2.4 Fabrication of PLA/epoxy/HNT nanocomposites for fill compositing 2.5 Impact and tensile testing of 3D printed specimens 2.6 Morphological analysis 3. Results and discussion 3.1 Filament diameter and quality 3.2 Impact tests 3.3 Tensile testing of PLA/HNT filament specimens 3.4 Fracture morphology 3.5 Interfacial interactions 4. Conclusion References 11. Role of ionic liquids in eliminating interfacial defects in mixed matrix membranes 1. Introduction 2. Transport of gases through membranes 2.1 Permeation through dense membranes 2.2 Sorption in polymer membranes 2.3 Diffusion in polymer membranes 3. Membrane synthesis materials 3.1 Polymer 3.1.1 Glassy polymers 3.1.2 Rubbery polymers 3.2 Inorganic materials 4. Mixed matrix membranes 4.1 The concept of MMM 4.2 Selected reports on MMM 4.3 Issues and challenges in MMM 5. Ternary MMM 6. Ionic liquid embedded ternary mixed matrix membranes 7. Conclusion and outlook Acknowledgement References 12. Advancement in flame retardancy of natural fibre reinforced composites with macro to nanoscale particulates additives 1. Introduction 2. Standard and guidelines in fire safety of composite materials 2.1 Background 2.2 Fire test techniques 2.2.1 Bunsen burner test 2.2.2 Limiting oxygen index test 2.2.3 Heat release and mass loss rate tests 2.2.4 Smoke generation and toxicity tests 3. Marco to nanoscale particulate additives in flame retardancy of NFRC 3.1 Macroscale flame retardant particulate additives 3.1.1 Mineral hydroxide flame retardant 3.1.2 Expandable graphite 3.1.3 Hydroxycarbonates flame retardant 3.1.4 Borates based flame retardant 3.1.5 Phosphorous based flame retardant 3.1.6 Halogenated flame retardant 3.1.7 Hybrid flame retardants with synergistic effect 3.2 Nanoscale particulates flame retardant additives 3.2.1 Layered silicates 3.2.2 Carbon-family nanomaterials 4. Prospects of macro- to nano-particulate flame retardants in NFRC References Part Three: Ceramic matrix 13. Current review on the utilization of nanoparticles for ceramic matrix reinforcement 1. Introduction 2. Properties and applications of nanoparticles in reinforcement of ceramics 3. Common nanomaterials used in reinforcement of ceramics 3.1 Alumina based materials 3.2 Titanium dioxide 3.3 Carbon based materials 3.3.1 Carbon nanotubes 3.3.2 Carbon fibres 3.3.3 Graphene 3.4 Zirconia and rare earth materials 3.5 Hydroxyapatite and phosphates 3.6 Metal particles 4. Surface modification of nanoparticles 5. Conclusions References 14. Characterization studies of ceramic-based composites related to functionalized filler-matrix interface 1. Background 1.1 Make-up and characteristics of a composite 2. Classification of composites 2.1 Matrix material 2.2 Reinforcement/filler phase 2.2.1 Particulate reinforcements 2.2.2 Ceramic material as particulate reinforcement 3. Types of ceramic used in composites 3.1 Ceramic-ceramic composites 3.2 Ceramic-metal composites 3.3 Graphite powder composites 3.4 Fiber-reinforced ceramics 4. Filler matrix interfaces 4.1 Particle-matrix interface 4.2 Carbon fiber matrix interface 4.3 Glass fiber-matrix interface 4.4 Ceramic fiber-matrix interface 4.5 Ceramic whisker-matrix interface 4.6 Oxide fiber-matrix interface 4.7 Non-oxide fiber-matrix interface 5. Characterization of interfaces in reinforced ceramic composites 6. Conclusions and future trends Acknowledgements References 15. Band-gap engineering using metal-semiconductor interfaces for photocatalysis and supercapacitor application: a nanoparticle ... 1. Introduction 2. Methodologies for synthesis of composite nanomaterials with improved physical and chemical properties 2.1 Chemical method 2.2 Thermal method 2.3 Deposition-precipitation method 2.4 Photodeposition method 2.5 Sputtering method 2.6 Chemical vapor deposition (CVD) 2.7 Anodization technique 3. The concept of band-gap engineering for the development of visible light active photocatalysts for energy harvesting applic ... 3.1 Schottky barrier 3.2 Ohmic contacts 3.3 The basic principle of photocatalytic water-splitting and purification of toxic water/air systems 3.4 Essentialities to be a photocatalyst 3.5 Bang-gap engineering 3.5.1 Composite semiconductors (formation of semiconductor heterojunctions) 3.5.2 Cation/anion doping 3.5.3 Surface co-catalysts 3.5.4 Semiconductor alloys 3.5.5 Nanodesign 4. Probable mechanistic pathways at the interfaces of particle reinforced nanocomposites in energy storage devices 4.1 Electrode materials 4.1.1 Carbon materials 4.1.1.1 Activated carbon 4.1.1.2 Carbide-derived carbons (CDC) 4.1.1.3 Carbon nanotubes (CNT) 4.1.1.4 Graphene 4.1.2 Metal-organic frameworks (MOFs) 4.1.3 Metal oxide 4.1.4 Metal chalcogenides (MX; X=S, Se) 4.2 Electrolyte 4.2.1 Aqueous and organic electrolytes 4.2.2 Ionic liquids 5. Conclusions References Part Four: Metal matrix 16. Stress in the interfaces of metal matrix composites (MMCs) in thermal and tensile loading 1. Introduction 2. Simulation facts 3. Thermal loading 3.1 Stress contour 3.2 Scattering of principal stress 3.3 Distribution of Von-Mises stress 4. Tensile loading 4.1 Influence of particle content on stress distribution 4.2 Influence of particle size on stress distribution 4.3 Influence of particles' shape on stress distribution 4.4 Effect of reinforcement content on strain field 4.5 Effect of reinforcement size on strain 4.6 Effect of particles' shape on strain field 5. Conclusions References 17. Interface tailoring and thermal conductivity enhancement in diamond particles reinforced metal matrix composites 1. Diamond particles reinforced Al matrix composites 1.1 Fabrication of Al/diamond composites 1.2 Characterization of composite microstructure 1.3 Characterization of Al/diamond interface 1.4 Thermal conductivity of Al/diamond composites 2. Diamond particles reinforced Cu matrix composites 2.1 Modification of Cu/diamond interface by metal matrix alloying 2.1.1 Fabrication of Cu/diamond composites 2.1.2 Characterization of composite microstructure 2.1.3 Characterization of Cu/diamond interface 2.1.4 Thermal conductivity of Cu/diamond composites 2.2 Modification of Cu/diamond interface by diamond surface coating 2.2.1 Fabrication of Cu/diamond composites 2.2.2 Characterization of composite microstructure 2.2.3 Characterization of Cu/diamond interface 2.2.4 Thermal conductivity of Cu/diamond composites 3. Summary Acknowledgements References 18. Particle reinforced nanocomposites, interfaces, strength and tribological properties depending on the reinforcement type 1. Introduction 2. Materials and methods 2.1 Materials and fabrication 2.2 Characterization and testing 3. Microstructure and hardness analysis 4. Effect of load on wear loss and friction coefficient 5. Effect of sliding speed on wear loss and friction coefficient 6. Wear debris analysis 7. Conclusions References Part Five: Extracellular matrix 19. Stress induced at the bone-particle-reinforced nanocomposite interface: a finite element approach 1. Introduction 2. Finite element approach 2.1 Overview 2.2 Some key issues 3. Structures of human bone 3.1 Overview 3.2 Bone remodeling 4. Application of FEA in biomedical engineering and dentistry 4.1 Overview 4.2 Bone tissue engineering and scaffolds 4.3 Dentistry 5. Conclusion References 20. Current understanding of interfacial stress transfer mechanisms in connective tissue 1. Introduction 2. Early studies on interfacial stress transfer mechanisms 2.1 Basic concepts, from an engineering perspective 2.2 Early analysis of interfibrillar shear stress 2.3 Insights derived from materials engineering and biological-based experiments 3. Later studies on interfacial stress transfer mechanisms 3.1 Engineering perspective: nanofibre-like particles reinforcing composites 3.2 Evidence against proteoglycans regulating collagen fibril stress uptake 3.3 Interfibrillar shear stress is responsible for collagen fibril stress uptake 4. Conclusion References Index A B C D E F G H I K L M N O P R S T U V W X Y Z Back Cover