دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed.]
نویسندگان: Carlos Fernandez-Llatas
سری: Health Informatics
ISBN (شابک) : 9783030539924, 9783030539931
ناشر: Springer International Publishing;Springer
سال نشر: 2021
تعداد صفحات: XIV, 306
[310]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Interactive Process Mining in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استخراج فرآیند تعاملی در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب راهنمای عملاً کاربردی برای روششناسی و فناوریها برای کاربرد الگوی فرآیند کاوی تعاملی ارائه میکند. مطالعات موردی در جایی ارائه شده است که این پارادایم با موفقیت در پزشکی اورژانس، فرآیندهای جراحی، مدلسازی رفتار انسانی، سکتههای مغزی و خدمات بیماران سرپایی به کار گرفته شده است، و خواننده را قادر میسازد تا درک عمیقی از نحوه بکارگیری فناوریهای فرآیند کاوی در مراقبتهای بهداشتی برای حمایت از آنها در استنباط ایجاد کند. دانش جدید از اقدامات گذشته، و ارائه دانش دقیق و شخصی برای بهبود تصمیم گیری بالینی آینده آنها.
کاوی فرآیندهای تعاملی در بهداشت و درمان به طور جامع نحوه استفاده از الگوریتم های یادگیری ماشین را برای ایجاد شواهد علمی واقعی برای بهبود پروتکل های مراقبت های بهداشتی روزانه پوشش می دهد و منبع ارزشمندی برای بسیاری از متخصصان سلامت به دنبال توسعه روش های جدید برای بهبود تصمیم گیری بالینی خود هستند.This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes and outpatients’ services, enabling the reader to develop a deep understanding of how to apply process mining technologies in healthcare to support them in inferring new knowledge from past actions, and providing accurate and personalized knowledge to improve their future clinical decision-making.
Interactive Process Mining in Healthcare comprehensively covers how machine learning algorithms can be utilized to create real scientific evidence to improve daily healthcare protocols, and is a valuable resource for a variety of health professionals seeking to develop new methods to improve their clinical decision-making.Foreword Preface Acknowledgements Contents 1 Interactive Process Mining in Healthcare: An Introduction 1.1 A New Age in Health Care 1.2 The Look for the Best Medical Evidence: Data Driven vs Knowledge Driven 1.3 To an Interactive Approach 1.4 Why Process Mining? 1.5 Interactive Process Mining References Part I Basics 2 Value-Driven Digital Transformation in Health and Medical Care 2.1 Evolution of Patient-Centric Medical Care 2.1.1 Holistic Approaches to Healthcare Improvement in a Patient-Centric Framework 2.1.2 VALUE Based HC Concept 2.1.3 The Triple Aim of Healthcare with Attention for Health Care Professionals: The Quadruple AIM 2.2 Data-Driven Sustainable Healthcare Framework 2.2.1 International Consortium for Health Outcome Measures 2.2.2 Digital Health Transformation 2.2.3 IT Infrastructure as Enabling Agent of Digital Transformation 2.2.4 Artificial Intelligence Widely Available for Contributing to the Transformation 2.3 Challenges and Adoption Barriers to Digital Healthcare Transformation 2.3.1 Data Management Clash 2.3.2 Organizational Self-awareness for Digital Adoption Readiness 2.3.3 Inherent Risks of AI 2.3.4 Actions to Reduce Challenges, Hurdles and Barriers 2.4 Summary References 3 Towards a Knowledge and Data-Driven Perspective in Medical Processes 3.1 Introduction 3.2 Process-Related Perspectives in Healthcare 3.3 Technologies for Clinical Decision-Making 3.3.1 Computer-Interpretable Guidelines 3.3.2 Development and Maintenance Issues with Computer-Interpretable Guidelines 3.4 Technologies for Clinical Process Management 3.4.1 Process Discovery and Continuous Improvement 3.4.2 Workflow Inference Models 3.5 Challenges of Clinical Decision-Making and Process Management Technologies References 4 Process Mining in Healthcare 4.1 Process Mining 4.2 Process Mining in Healthcare 4.2.1 Variability in the Medical Processes 4.2.2 Infrequent Behaviour Could be the Interesting One 4.2.3 Medical Processes Should be Personalized 4.2.4 Medical Processes Are Not Deterministic 4.2.5 Medical Decisions Are Not Only Based on Medical Evidence, But Also on Medical Expertise 4.2.6 Understandability Is Key 4.2.7 Must Involve Real World Data 4.2.8 Solving the Real Problem 4.2.9 Different Solutions for Different Medical Disciplines 4.2.10 Medical Processes Evolve in Time 4.3 Conclusion References 5 Data Quality in Process Mining 5.1 Introduction 5.2 Data Quality Taxonomies 5.2.1 General Data Quality Taxonomies 5.2.2 Data Quality Taxonomies in Process Mining 5.2.2.1 Process Mining Manifesto 5.2.2.2 Taxonomy by 5:bosewanna2013 5.2.2.3 Taxonomy by 5:verhulst2016evaluating 5.2.2.4 Event Log Imperfection Patterns by 5:suriadi2017event 5.2.2.5 Taxonomy by 5:vanbrabant2019quality 5.3 Data Quality Assessment 5.3.1 Data Quality Issues in Real-Life Healthcare Logs 5.3.2 Data Quality Assessment Frameworks 5.3.2.1 Framework by 5:fox2018data 5.3.2.2 Framework by 5:andrews2019leveraging 5.3.2.3 Framework by 5:martin2019interactive 5.3.3 Tools for Data Quality Assessment 5.4 Data Cleaning 5.4.1 Data Cleaning Heuristics 5.4.1.1 Incorrect Timestamps 5.4.1.2 Missing Case Identifiers 5.4.1.3 Missing Events 5.4.1.4 Incorrect/Missing Attribute Values 5.4.2 A Reflection on Data Cleaning Heuristics 5.5 Conclusion References 6 Towards Open Process Models in Healthcare: Open Standards and Legal Considerations 6.1 Introduction 6.1.1 Pathways, Guidelines and Computerized Clinical Decision Support 6.2 The Need of Semantics for Clinical Processes 6.3 Data and Contextual Semantics with openEHR 6.3.1 Governance of Clinical Models 6.3.2 The Connection of Process Mining with OpenEHR 6.4 Workflow Semantics with openEHR 6.5 Privacy and Legal Framework References Part II Interactive Process Mining in Health 7 Applying Interactive Process Mining Paradigm in Healthcare Domain 7.1 Dealing with Digital Transformation Paradigm in Healthcare 7.2 Data Science for Medicine: Filling the Gap Between Data and Decision 7.2.1 Will the Doctors Be Replaced by Computers? 7.2.2 Towards an Interactive Pattern Recognition Approach 7.2.3 Through Explainable Models 7.3 Interactive Process Mining 7.4 Discussion and Conclusions References 8 Bringing Interactive Process Mining to Health Professionals: Interactive Data Rodeos 8.1 Introduction 8.2 Interactive Process Mining Data Rodeos 8.2.1 Data Rodeo Sessions 8.2.2 Data Rodeos in an Interactive Process Methodology 8.3 Interactive Data Tools for Data Rodeos 8.3.1 Process Mining Ingestion 8.3.2 Log Filtering and Processing 8.3.3 Process Mining Discovery 8.3.4 Model Processing 8.3.5 Model Enhancement 8.4 Conclusions References 9 Interactive Process Mining in Practice: Interactive Process Indicators 9.1 Approaching the Process Assessment to Health Professionals 9.2 Interactive Process Indicators (IPIs) 9.3 Measuring the Value Chain 9.4 Interactive Process Indicators by Example 9.4.1 Analyzing the Hospital Process 9.4.2 Base Process 9.4.3 Adding a Special Unit 9.4.4 Creating an Information Campaign 9.5 Conclusions References Part III Interactive Process Mining in Action 10 Interactive Process Mining in Emergencies 10.1 The Emergency Process 10.2 An Interactive Process Indicator for Emergency Departments 10.2.1 Seasons 10.2.2 Working Days and Weekends 10.2.3 Age 10.2.4 Hyperfrequenters 10.2.5 Returns and Readmissions 10.2.6 Length of Stay 10.2.7 Exitus 10.3 Discussion and Conclusion References 11 Interactive Process Mining in Surgery with Real Time Location Systems: Interactive Trace Correction 11.1 Introduction 11.2 Background 11.3 Trace Correction 11.4 Experiments 11.4.1 Interactive Pattern Recognition for Improving the Application of Error-Correcting Techniques to RTLS 11.4.2 Physical Model as Graph Model 11.4.3 Interactive Error Model 11.4.4 Results of the Algorithm Using the Physical Model 11.4.5 Interactive Process Correction: Process Graph Model 11.5 Discussion and Conclusions References 12 Interactive Process Mining in Type 2 Diabetes Mellitus 12.1 Introduction 12.2 Type 2 Diabetes as a Process 12.3 Process Mining Approach to Type 2 Diabetes 12.4 Type 2 Diabetes Management Processes 12.4.1 Analysis of HbA1C 12.5 Conclusion References 13 Interactive Process Mining in IoT and Human BehaviourModelling 13.1 Introduction 13.2 Study Data and Procedure 13.2.1 Clustering Behaviour Models 13.3 Results 13.3.1 Group 0 13.3.2 Group 1 13.3.3 Group 2 13.3.4 Group 3 13.4 Interpreting Group IPIs 13.5 Conclusion References 14 Interactive Process Mining for Medical Training 14.1 Process Mining in Medical Training 14.2 POME Methodology 14.3 Model Stage 14.3.1 Process Modeling 14.3.2 Delphi Panel 14.4 Data Stage 14.4.1 Execution and Recording 14.4.2 Video Tagging 14.5 Analysis Stage 14.6 Conclusion References 15 Interactive Process Mining for Discovering Dynamic Risk Models in Chronic Diseases 15.1 Introduction 15.2 Chronic Conditions 15.3 Assessing Chronic Conditions with Risk Models 15.4 Interactive Data Rodeo for Creating Dynamic Risk Models 15.4.1 Interactive Process Indicators for BMI and BP 15.5 Discussion and Conclusions References 16 Interactive Process Mining-Induced Change Management Methodology for Healthcare 16.1 Towards an Interactive Change Management Model in Value-Based Healthcare 16.2 Interactive Process Mining-Informed Change Management Methodology for Healthcare 16.3 The Team 16.4 Assessment Phase 16.4.1 Readiness Assessment 16.4.2 Stakeholders\' Map 16.5 Arrangement Phase 16.5.1 Stage 1: Team Setup 16.5.2 Stage 2: Orientation and Creativity 16.5.3 Stage 3: Optimization 16.5.4 Stage 4: Mise en place 16.5.5 Stage 5: First Contact 16.6 Adaptation and Adoption Phase 16.7 Application Phase 16.7.1 Analysing Change 16.7.2 Norming Change 16.7.3 Performing Change 16.7.4 Monitoring Change 16.7.5 Fixing Change 16.8 Conclusion References 17 Interactive Process Mining Challenges 17.1 Introduction 17.2 Engage Health Professionals 17.3 Look for the Best Representation Languages 17.4 Interactive Data Quality Assessment 17.5 Data Protection Laws Barriers 17.6 Dealing with Medical Data 17.7 Validation and Adaption of Best Practices and Clinical Guidelines 17.8 Conclusions References Index