دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Bertolo. David
سری: Information Systems, Web and Pervasive Computing: Human-Machine Interaction
ISBN (شابک) : 1848219261, 9781848219267
ناشر: Wiley-ISTE
سال نشر: 2016
تعداد صفحات: 229
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Interactions on Digital Tablets in the Context of 3D Geometry Learning: Contributions and Assessments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تعاملات در قرص های دیجیتال در زمینه یادگیری هندسه سه بعدی: مشارکت ها و ارزیابی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در چند سال اخیر، دستگاه های تلفن همراه چند لمسی به طور فزاینده ای رایج شده اند. با این حال، برنامه های بسیار کمی در زمینه یادگیری هندسه سه بعدی را می توان در فروشگاه های اپلیکیشن پیدا کرد. دستکاری صحنه سه بعدی با دستگاه دو بعدی مشکل اصلی چنین برنامه هایی است.
در طول این کتاب، نویسنده بر روی اجازه دادن به دانش آموزان جوان برای دستکاری، مشاهده و اصلاح صحنه های سه بعدی با استفاده از فناوری های جدید ارائه شده توسط تبلت های دیجیتال تمرکز دارد. نویسنده از طریق یک رویکرد کاربر محور، دستور زبانی از تعاملات متناسب با یادگیرندگان جوان را پیشنهاد می کند و سپس مقبولیت، سهولت استفاده و سهولت یادگیری تعاملات پیشنهادی را ارزیابی می کند.
در نهایت، نویسنده مزایای آموزشی استفاده از تبلتها را با برنامهای بر اساس دستور زبان پیشنهادی در محل مورد مطالعه قرار میدهد. نتایج نشان میدهد که دانشآموزان قادر به دستکاری، مشاهده و اصلاح صحنههای سه بعدی با استفاده از مجموعهای از تعاملات سازگار هستند. علاوه بر این، در زمینه یادگیری هندسه سه بعدی، سهم قابل توجهی در دو کلاس مشاهده شده است که دانشآموزان از چنین برنامهای استفاده میکنند.
رویکرد در اینجا بر تعامل با تبلتهای دیجیتال برای افزایش یادگیری به جای فناوری تمرکز دارد. ابتدا، تعریف اینکه کدام تعاملات به دانش آموزان اجازه می دهد تا وظایف مورد نیاز در فرآیند یادگیری را تحقق بخشند، سپس، ارزیابی تأثیر این تعاملات بر فرآیند یادگیری. این اولین بار است که هر دو تعامل و فرآیند یادگیری به طور همزمان در نظر گرفته شده است.
Over the last few years, multi-touch mobile devices have become increasingly common. However, very few applications in the context of 3D geometry learning can be found in app stores. Manipulating a 3D scene with a 2D device is the main difficulty of such applications.
Throughout this book, the author focuses on allowing young students to manipulate, observe and modify 3D scenes using new technologies brought about by digital tablets. Through a user-centered approach, the author proposes a grammar of interactions adapted to young learners, and then evaluates acceptability, ease of use and ease of learning of the interactions proposed.
Finally, the author studies in situ the pedagogic benefits of the use of tablets with an app based on the suggested grammar. The results show that students are able to manipulate, observe and modify 3D scenes using an adapted set of interactions. Moreover, in the context of 3D geometry learning, a significant contribution has been observed in two classes when students use such an application.
The approach here focuses on interactions with digital tablets to increase learning rather than on technology. First, defining which interactions allow pupils to realize tasks needed in the learning process, then, evaluating the impact of these interactions on the learning process. This is the first time that both interactions and the learning process have been taken into account at the same time.
Content: Preface ix Introduction xi Chapter 1. Construction of Spatial Representation and Perspective in Students 1 1.1. Spatial representation in children according to Piaget 3 1.1.1. From perception to representation 3 1.1.2. Projective space 8 1.1.3. Euclidean space 13 1.1.4. Summary 14 1.2. The representation of geometric objects: the status of drawings 15 1.2.1. Status of drawings in mathematics: drawings versus figures 15 1.2.2. Use of geometrical representations 18 1.2.3. The three main functions of drawings in geometry 25 1.3. From the physical shape to its planar representation 25 1.3.1. The institutional perspective 25 1.3.2. Teaching 3D geometry 27 1.3.3. Different representations of 3D objects 29 1.3.4. The conflict between the SEEN and the KNOWN in children 34 1.4. Benefits of new technologies and dynamic 3D geometry 37 1.4.1. Advantages of 3D geometry programs 38 1.4.2. Limits of 3D geometry programs and consequences 40 1.4.3. Partial conclusions and initial hypotheses 46 Chapter 2. Mobile Devices and 3D Interactions 49 2.1. Why mobile devices? 50 2.1.1. A long-standing tradition in mathematics 51 2.1.2. Interest from the educational community 54 2.1.3. A field reality 56 2.2. Mobile devices 57 2.2.1. Different types of mobile devices 58 2.2.2. Entry systems of mobile terminals 61 2.3. Interactions on mobile devices and physiology 70 2.3.1. Specificities of mobile devices 70 2.3.2. Limitations due to physiologic characteristics 71 2.4. 3D interaction techniques 74 2.4.1. Mathematical reminders 74 2.4.2. 3D selection/manipulation and navigation interactions 77 2.5. Language of interactions and classifications 88 2.5.1. Language and grammar of gestures 89 2.5.2. Classifications 92 Chapter 3. Elaboration and Classification of Interactions 95 3.1. Human-centered design 95 3.1.1. A definition 96 3.1.2. Principles of the user-based approach 97 3.2. Study of the needs and behaviors of users 98 3.2.1. Study of pre-existing 3D geometry software 98 3.2.2. Study of users behaviors and needs 103 3.3. Our grammar and interaction language 109 3.3.1. Classification of tactile movement interactions 109 3.3.2. Definition of the grammar 111 3.3.3. The prototype: FINGERS (Find INteractions for GEometry leaneRS) 112 3.3.4. Our gestural language of interactions 114 3.4. Evaluation of the acceptance of interactions (selection, translation and rotation) 133 3.4.1. Experimental challenges and constraints 133 3.4.2. Preliminary evaluation of the acceptance of rotation and point of view change interactions 134 3.4.3. Comparison between gyroscope, face-tracking and multi-touch 140 3.4.4. Student learning of prototype interactions 147 3.5. Conclusion and perspectives 152 Chapter 4. Evaluation of the Educational Benefits for 3D Geometry 155 4.1. Partnerships 156 4.1.1. The schools in the field 156 4.1.2. The ESPE 157 4.1.3. Mathematics teachers associations 157 4.2. Limits 157 4.2.1. Ethical: the equality of chances for students 157 4.2.2. Practical: progression of the concepts throughout the year . 158 4.3. Evaluation of problem solving aids 158 4.3.1. In the field 159 4.3.2. Laboratory (EEG) 166 4.4. Evaluation of the benefits in learning 3D geometry 174 4.4.1. Participants 174 4.4.2. Material and experimental conditions 174 4.4.3. Experimental plan 176 4.4.4. Results and discussion 178 4.5. Partial conclusions 185 Conclusion 187 Bibliography 191 Index 203