دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Christine Lors, Françoise Feugeas, Bernard Tribollet سری: MATERIAUX ISBN (شابک) : 2759822001, 9782759822003 ناشر: EDP Sciences سال نشر: 2019 تعداد صفحات: 416 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Interactions Materials - Microorganisms: Concretes and Metals more Resistant to Biodeterioration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فعل و انفعالات مواد - میکروارگانیسم ها: بتن ها و فلزات در برابر فرسایش زیستی مقاومت بیشتری دارند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب چند رشته ای نتیجه کار جمعی ترکیبی از ارائه های ارائه شده توسط متخصصان مختلف در مدرسه CNRS «BIODEMAT» است که در اکتبر 2014 در لاروشل (فرانسه) برگزار شد. این برای خوانندگان طیف وسیعی از تخصص های علمی (شیمی، زیست شناسی، فیزیک و غیره) طراحی شده است و مشکلات مختلف صنعتی (مانند آب، فاضلاب و نگهداری مصالح ساختمانی) را بررسی می کند.
فلزی، سیمانی، پلیمری و مواد کامپوزیت بسته به خدمات و محیط عملیاتی آنها پیر می شوند. در چنین مواردی، وجود میکروارگانیسم ها می تواند منجر به تخریب بیولوژیکی شود. با این حال، میکروارگانیسمها همچنین میتوانند به محافظت از ساختارها کمک کنند، مشروط بر اینکه بر امکانات بیشمار آنها تسلط یافته و به خوبی استفاده شود.
این کتاب به پنج موضوع مرتبط با کلونسازی زیستی، تخریب زیستی مواد، و بهبودهای بالقوه در چنین موادی تقسیم شده است. سطوح عملکرد بهتر با توجه به تخریب زیستی:
• شیمی فیزیکی سطوح؛
• نقش بیوفیلم در تخریب زیستی؛
• خوردگی زیستی مواد فلزی؛ >
• تخریب زیستی مواد غیرفلزی؛
• طراحی و اصلاح مواد.
وابستگی نویسندگان فصول مختلف، هم افزایی بین تحقیقات دانشگاهی و آن را نشان می دهد. انتقال به صنعت این نشان دهنده تعامل اساسی بین بازیگران مختلف در این زمینه پیچیده است: تجزیه و تحلیل، درک، و پاسخ به مسائل علمی مرتبط با تخریب زیستی.
This multidisciplinary book is the result of a collective work synthesizing presentations made by various specialists during the CNRS «BIODEMAT» school, which took place in October 2014 in La Rochelle (France). It is designed for readers of a range of scientific specialties (chemistry, biology, physics, etc.) and examines various industrial problems (e.g., water, sewerage and maintaining building materials).
Metallic, cementitious, polymeric and composite materials age depending on their service and operational environments. In such cases, the presence of microorganisms can lead to biodeterioration. However, microorganisms can also help protect structures, provided their immense possibilities are mastered and put to good use.
This book is divided into five themes related to biocolonization, material biodeterioration, and potential improvements to such materials resulting in better performance levels with respect to biodeterioration:
• physical chemistry of surfaces;
• biofilm implication in biodeterioration;
• biocorrosion of metallic materials;
• biodeterioration of non-metallic materials;
• design and modification of materials.
The affiliations of the authors of the various chapters illustrate the synergy between academic research and its transfer to industry. This demonstrates the essential interaction between the various actors in this complex field: analysing, understanding, and responding to the scientific issues related to biodeterioration.
Cover\nTable of contents\nPreface\nList of authors\nAcknowledgements\nTheme 1 Physico-chemistry of surfaces\n 1. Introduction to the physical chemistry of surfaces\n 1.1 \rGeneralities\n 1.2 \rSurface tension and wettability\n 1.2.1 \rConcepts\n 1.2.2 \rApplications\n 1.3 \rAdsorption\n 1.4 \rCharged surfaces\n 1.4.1 \rConcepts\n 1.4.2 \rInteractions between charged surfaces\n 1.5 \rCharacterization and modification of surfaces\n Acknowledgements\n References\n 2. Construction materials: general description and physical chemistry\n 2.1 \rGeneral description – cements, mortars and concretes\n 2.1.1 \rPortland cement\n 2.1.2 \rCalcium Aluminate Cements (CAC)\n 2.1.3 \rModern cements: mixtures of minerals\n 2.2 \rSetting and hardening – fundamental principles of crystallisation\n 2.2.1 \rNotions of solubility equilibrium, undersaturation and supersaturation\n 2.2.2 \rNucleation\n 2.2.3 \rCrystal growth\n 2.2.4 \rPrinciples of crystallisation applied to Portland cement\n 2.2.5 \rPrinciples of crystallisation applied to calcium aluminate cements\n 2.3 \rSurface chemistry of hydrated cements\n 2.3.1 \rSurface charge and z (zeta) potential\n 2.3.2 \rConsequences for cementitious materials\n 2.4 \rConclusion\n References\n 3. \rMicroorganism-Concrete Interactions\n 3.1 \rGeneral information\n 3.2 \rParameters influencing the bioreceptivity of cementitious materials\n 3.2.1 \rRelationship between these parameters and bioreceptivity\n 3.2.2 \rSurface energy\n 3.2.3 \rMeasurement of contact angles\n 3.3 \rMeasurements of the evolution of surface properties of cementitious pastes with the technique of measurement of dynamic angles\n 3.3.1 \rImplementation\n 3.3.2 \rEvolution of contact angles as a function of time\n 3.3.3 \rEvolution of contact angles as a function of diameter\n 3.4 \rConclusion\n References\nTheme 2 Biofilms: actors of biodeterioration\n 4. \rThe bacterial cell: the functional unit of biofilms\n 4.1 \rIntroduction\n 4.2 \rMicroorganisms\n 4.3 \rMicrobial diversity and habitat diversity\n 4.4 \rStructures and functions of the bacterial cell\n 4.4.1 \rCytoplasm, the nucleoid, and inclusions\n 4.4.2 \rThe cytoplasmic membrane\n 4.4.3 \rCell envelopes\n 4.4.4 \rAppendages, filaments and cytoplasmic extensions\n 4.5 \rMetabolism in bacteria\n 4.5.1 \rAerobic respiration of chemoorganotrophs\n 4.5.2 \rAerobes chemolithotrophs\n 4.5.3 \rThe anaerobic respirations\n 4.5.4 \rFermentations\n 4.5.5 \rStratification and spatiometabolic structuration, syntrophy\n 4.5.6 \rCouplings of biotic and abiotic reactions: indirect biotic reactions\n 4.6 \rConclusion\n References\n 5. \rBiofilm lifestyle of the microscopic inhabitants of surfaces\n 5.1 \rBiofilms, a lifestyle that concerns us\n 5.2 \rA continuous construction site\n 5.3 \rA complex organic cement to maintain the edifice\n 5.4 \rNearly indestructible buildings\n 5.4.1 The extracellular matrix as a protective shield\n 5.4.2 \rDifferentiation and physiological adaptation\n 5.4.3 \rThe biofilm as a trigger of genetic plasticity in bacteria\n 5.4.4 \rQuorum-sensing, the social network of bacteria\n 5.4.5 \rMultispecies biofilms: a successful alliance\n 5.5 \rHow to live with biofilms\n References\n 6. Journey to the centre of biofilms: nature, cohesiveness and functions of the exopolymer matrix\n 6.1 \rChemistry of EPS in environmental biofilms\n 6.2 \rContribution of EPS to the cohesiveness of biofilms\n 6.3 \rReactivity of EPS in biofilms\n 6.3.1 \rTrapping ions and organics by EPS\n 6.3.2 \rHydrolytic enzymes associated with EPS\n 6.3.3 Protection of biofilms against disinfectants\n 6.4 \rConclusion\n References\n 7. Biofilms in a marine environment: example of intertidal mud flats and metallic port structures\n 7.1 \rBiofilm life of marine bacteria\n 7.2 \rConsequences of the establishment of biofilms on human activity in the marine environment\n 7.3 \rBacterial communities of two examples of marine biofilms that may have different impacts\n 7.3.1 \rThe biofilms of the intertidal mudflats\n 7.3.2 \rThe biofilms of metallic port structures\n 7.3.3\r Interactions within marine biofilms\n 7.4 \rConclusion\n References\n 8. Biofilms and management of microbial quality in drinking water supply systems\n 8.1 \rFrom treatment plant to the tap: a vast and complex to manage chemical and biological reactor\n 8.2 The water-material interfaces in drinking water distribution systems\n 8.3 \rEvolution of understanding of the causes for bacterial growth in drinking water distribution systems\n 8.3.1 Biodegradable organic matters\n 8.3.2 \rKnowledge on biofilms\n 8.4 \rControlling biofilms in drinking water distribution systems\n 8.5 \rConclusion\n References\n 9. \rBiofilms in industrial cooling circuits\n 9.1 \rIntroduction\n 9.2 \rBiofilm and evaporative cooling circuits: health hazard\n 9.2.1 \rEvaporative cooling circuits\n 9.2.2 \rCharacteristics of biofilms in the circuits\n 9.2.3 \rDetection and measurement of the biofilm\n 9.2.4 \r“Risk of Legionella” and the role of biofilm\n 9.2.5 \rMajor health hazard factors\n 9.2.6 \r“Legionella risk” management strategy\n 9.3 \rBiofilm in a refrigerated system: the risk of corrosion\n 9.3.1 \rCold water piping system\n 9.3.2 Characteristics of biofilms in cold water piping systems\n 9.3.3 \rDanger due to corrosion induced by microorganisms\n 9.3.4 Major risk factors\n 9.3.5 Corrosion risk management strategy\n 9.4 \rConclusion\n References\nTheme 3Biocorrosion of metallic materials\n 10. \rElectrochemical methods applied to biocorrosion\n 10.1 \rIntroduction\n 10.2 \rInfluence of EPS obtained from Pseudomonas sp. NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in sea water\n 10.2.1 \rExperimental methods\n 10.2.2 Results: electrochemical measurements\n 10.2.3 Corrosion mechanism\n 10.2.4 \rImpedance model\n 10.2.5 \rResults: corrosion current\n 10.3 \rInfluence of EPS extracted from Desulfovibrio alaskensis on the corrosion behaviour of carbon steel St37-2 in sea water\n 10.3.1 \rExperimental results\n 10.3.2 \rResults\n 10.4 \rConclusion\n Acknowledgments\n References\n 11. On the iron-sulphur interactions involved in biocorrosion phenomena\n 11.1 \rIntroduction\n 11.2 \rMarine corrosion of carbon steel\n 11.2.1 Role of the corrosion product layer\n 11.2.2 Description of the corrosion product layer\n 11.3 Corrosion of carbon steel in argillite and corrosion cells associated with heterogeneous corrosion product layers\n 11.3.1 \rHeterogeneity of the corrosion product layer\n 11.3.2 \rGalvanic cells and heterogeneity of the corrosion product layer\n 11.4 \rConclusion\n References\nTheme 4Biodeterioration of non-metallic materials\n 12. Biodeterioration of cementitious materials: interactions environment - microorganisms - materials\n 12.1 \rIntroduction\n 12.2 \rInteractions between the environment and microorganisms\n 12.2.1 \rAlgae and cyanobacteria\n 12.2.2 Fungi\n 12.2.3 \rBacteria\n 12.3 \rInteractions between the environment and cementitious materials\n 12.3.1 \rAgeing of cementitious materials according to the environment\n 12.3.2 \rBiocolonization of cementitious materials\n 12.4 \rInteractions between the environment and cementitious materials: biodeterioration\n 12.4.1 \rAesthetic biodeterioration\n 12.4.2 \rMechanical biodeterioration\n 12.4.3 \rChemical / mechanical biodeterioration\n 12.5 Scientific approach to study the biodeterioration of cementitious materials\n 12.5.1 \rLaboratory tests for aesthetic biodeterioration\n 12.5.2 Laboratory tests for the chemical/mechanical biodeterioration\n 12.6 \rConclusion\n References\n 13 \rConcrete biodeterioration\n 13.1 \rIntroduction\n 13.2 \rMaterial biodeterioration, specificities of concrete\n 13.2.1 Chemical specificity\n 13.2.2 \rPhysics specificities\n 13.2.3 \rSpecificity of the study of the actual biodeterioration of concrete\n 13.3 \rGeneric biodeterioration process\n 13.4 \rMeasurement of concrete biodeterioration\n 13.4.1 \rPhysical Properties\n 13.4.2 \rChemical properties\n 13.5 \rImprovement of concrete strength\n 13.5.1 \rConcrete composition\n 13.5.2 \rImplementation\n 13.6 \rDifferences between chemical attack and biological attack\n 13.7 \rConclusion\n References\n 14. Biodeterioration of cementitious materials in sewage structures\n 14.1 \rIntroduction\n 14.2 \rHow does biodeterioration manifest itself in sewage and wastewater structures?\n 14.3 \rHydrogen sulphide: the main vector of biodeterioration phenomenon in sewage structures\n 14.4 \rImpact of biodeterioration on cement materials\n 14.4.1 \rInfluence of the chemical composition of the cement material on its durability in sewage systems\n 14.4.2 \rPolymer coatings as protection for cement materials in sewage and wastewater systems\n 14.5 \rTests in situ for the study of the biodeterioration phenomenon in sewage and wastewater systems\n 14.5.1 \rExposure in South Africa, the Virginia Experimental Sewer\n 14.5.2 \rExposure in Japan, Hokkaido university\n 14.5.3 \rExposure in France, Ifsttar\n 14.6 \rConclusion\n References\n 15. \rBiodeterioration of cultural properties\n 15.1 \rIntroduction\n 15.2 \rMicroorganisms involved in the biodeterioration of cultural property\n 15.2.1 \rMicroscopic fungi\n 15.2.2 \rBasidiomycetes\n 15.2.3 \rNon-photosynthetic bacteria\n 15.2.4 \rPhotosynthetic microorganisms\n 15.3 \rFungi detection methods\n 15.4 \rManganese oxidation of medieval stained glass windows\n 15.5 \rTreatments methods: the use of UV-C radiation\n 15.6 \rConclusion\n References\nTheme 5Design and modification of materials\n 16. Choosing metallic materials with respect to microbial induced corrosion\n 16.1 \rIntroduction\n 16.2 \rTitanium and its alloys\n 16.3 \rAluminium and its alloys\n 16.4 \rNon-alloy steels\n 16.4.1 \rPitting factor\n 16.4.2 \rQuantification of general corrosion in natural water\n 16.5 \rStainless steels\n 16.5.1 \rAerated environments\n 16.5.2 \rDeaerated environments\n 16.5.3 \rMixed environments (with aerated and deaerated zones)\n 16.6\rConclusion\n References\n 17. \rAntimicrobial surfaces: A tool to combat biofilm development\n 17.1 \rIntroduction\n 17.2 \rDifferent types of antimicrobial surfaces or coatings\n 17.2.1 \rNanostructured surfaces\n 17.2.2 \rAntimicrobial peptides\n 17.2.3 \rPolymer with anti-adhesive property: polyethylene glycol\n 17.2.4 \rCoating containing nanoparticles (Ag, Cu, TiO2, ZnO, CuO)\n 17.2.5 \rBiocidal polymers (hydrophobic cationic polymers, N-halamines)\n 17.3 \rFocus on N-halamine coatings (regenerable)\n 17.4 \rConclusion\n References\n 18. Extracellular microbial substances for cementitious materials\n 18.1 \rIntroduction: cementitious materials and admixtures\n 18.2 \rExtracellular microbial substances\n 18.3 \rInfluence of the EPSs on mechanical performances\n 18.3.1 \rRheological properties\n 18.3.2 \rCompressive strength\n 18.4 \rInfluence of EPS on physicochemical characteristics\n 18.4.1 \rPorosity\n 18.4.2 \rMechanisms of hydration\n 18.4.3 \rRoughness of cement pastes\n 18.5 \rInteraction between extracellular substances and cementitious materials: curative actions\n 18.5.1 \rSelf-healing concrete\n 18.5.2 \rPermeability of cementitious materials\n 18.6 \rConclusion\n References