ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Intensified Sediment Disasters in Japan : The 2011 Kii Peninsula Torrential Rain Disasters

دانلود کتاب فجایع رسوبی تشدید شده در ژاپن: فجایع باران سیل آسای شبه جزیره کی در سال 2011

Intensified Sediment Disasters in Japan : The 2011 Kii Peninsula Torrential Rain Disasters

مشخصات کتاب

Intensified Sediment Disasters in Japan : The 2011 Kii Peninsula Torrential Rain Disasters

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781032450674, 9781003375210 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: xi; 189
[203] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 130 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Intensified Sediment Disasters in Japan : The 2011 Kii Peninsula Torrential Rain Disasters به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فجایع رسوبی تشدید شده در ژاپن: فجایع باران سیل آسای شبه جزیره کی در سال 2011 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فجایع رسوبی تشدید شده در ژاپن: فجایع باران سیل آسای شبه جزیره کی در سال 2011

فاجعه شبه جزیره کیی در سال 2011 بزرگترین فاجعه رسوب و سیل ژاپن پس از جنگ بود. این کتاب به تجزیه و تحلیل فاجعه و واکنش اضطراری و اقدامات بعدی برای پیشگیری از بلایا می پردازد. همچنین مقایسه بین‌المللی و توصیه‌هایی برای تلاش‌های کاهش و بازیابی ارائه می‌کند. اگرچه انتظار می‌رفت مقیاس و شدت این فاجعه فقط هر 100 سال یک بار رخ دهد، گرمایش جهانی شاهد تشدید چنین بلایایی در سراسر جهان بوده است. بنابراین، این کتاب مرجع عمیق ارزشمندی را برای خوانندگان در مورد چگونگی آماده شدن برای چنین فاجعه ای، شناسایی عوامل خطر و واکنش مناسب ارائه می دهد. مشارکت کنندگان از نتایج بررسی های میدانی انجام شده توسط انجمن ژئوتکنیک ژاپن در زمان فاجعه و تحولات بعدی استفاده می کنند. ابتدا عواملی را که در بروز فاجعه نقش داشته اند، از جمله شرایط هواشناسی، توپوگرافی و زمین شناسی در زمان وقوع فاجعه را توضیح می دهند. آنها سپس مکانیسم های شکست شیب و آسیب ناشی از شکست شیب در سراسر استان های نارا، واکایاما و میه را توصیف می کنند. در نهایت، آنها واکنش پس از فاجعه، از جمله بازیابی و بازسازی و پیشگیری از بلایا و اقدامات کاهش در منطقه آسیب دیده را توصیف می کنند. بنابراین خوانندگان اهمیت عوامل مؤثر را درک خواهند کرد و قادر خواهند بود استراتژی‌های کاهش بلایا و طرح‌های واکنش را بهبود بخشند که جان انسان‌ها را نجات می‌دهد و از آسیب به زیرساخت‌ها و اقتصاد محلی جلوگیری می‌کند. این کتاب منبع ارزشمندی برای محققان، زمین شناسان، مهندسان شاغل و مقامات دولتی است که در پیشگیری و مقابله با بلایا نقش دارند. دانشجویان مقطع کارشناسی و کارشناسی ارشد نیز از رویکرد عمیق کتاب بهره مند خواهند شد.


توضیحاتی درمورد کتاب به خارجی

The 2011 Kii Peninsula disaster was postwar Japan\'s largest sediment and flood disaster. This book analyses the disaster and the emergency response and subsequent disaster prevention efforts. It also provides an international comparison and recommendations for mitigation and recovery efforts. Although the scale and intensity of the disaster were expected to occur just once every 100 years, global warming has seen the intensification of such disasters around the globe. This book therefore presents an invaluable in-depth reference for readers on how to prepare for such a disaster, identify risk factors, and react accordingly. Contributors draw on the results of field surveys conducted by the Japanese Geotechnical Society at the time of the disaster and subsequent developments. First, they explain the factors that contributed to the disaster, including the meteorological, topographical, and geological conditions at the time of the disaster. They then describe the mechanisms of slope failure and damage caused by the slope failures across Nara, Wakayama, and Mie prefectures. Finally, they describe the post-disaster response, including the recovery and reconstruction and disaster prevention and mitigation efforts in the affected area. Readers will therefore understand the importance of the contributing factors and will be able to improve disaster mitigation strategies and response plans that will save lives and prevent damage to local infrastructure and economies. This book is an invaluable resource for researchers, geologists, practicing engineers, and government officials who are involved in disaster prevention and response. Upper undergraduate and graduate students will also benefit from the book\'s in-depth approach.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Acknowledgments
Preface
1. Introduction
	1.1 Motivation
	1.2 Kii Peninsula Disasters
	1.3 Research and Analysis of Kii Peninsula Disaster
	1.4 Purpose of This Book
	1.5 Outline of This Book
	References
2. Intensification of Sediment Disasters in the World and in Japan
	2.1 What Happens in the World?
		2.1.1 Global Warming and Extreme Weather
		2.1.2 Sediment Disasters in the World
		2.1.3 2009 Debris Flow Disaster in Xiaolin Village, Taiwan [18]
		2.1.4 2010 Debris Flow Disaster in Zhouqu County, China [19]
		2.1.5 2012 Philippine Typhoon Bopha Disaster [20-22]
	2.2 What Happens in Japan
		2.2.1 A Disaster-Prone Country
		2.2.2 Sediment Disasters in Japan
		2.2.3 2012 Sediment Disaster at Northern Kyushu [29,30]
		2.2.4 2013 Debris Flow Disaster at Izu-Oshima Island [31,32]
		2.2.5 2014 Debris Flow Disaster at Hiroshima [33,34]
		2.2.6 2017 Heavy Rain Disaster at Northern Kyushu [37,38]
		2.2.7 2018 Heavy Rain Disaster in Western Japan [39]
		2.2.8 2019 Eastern Japan Typhoon Disaster [40]
		2.2.9 2020 July Heavy Rain Disaster [41]
	2.3 Summary
	References
3. Rainfall Characteristics of Severe Tropical Storm Talas and Topographical and Geological Features of the Kii Peninsula
	3.1 Introduction
	3.2 Rainfall Characteristics Related to the Disaster
		3.2.1 Rainfall Caused by Typhoon
		3.2.2 Comparison of Heavy Rainfall Distribution and Disaster Concentration Areas
		3.2.3 Transition of Rainfall Intensity and Return Periods
		3.2.4 Precursors of Collapse and Preceding Rainfall
		3.2.5 Relationship between Rainfall and Large-Scale Slope Failure
	3.3 Topography and Geology
		3.3.1 Topographical Outline
		3.3.2 Geological Outline
		3.3.3 Structure of Accretionary Complex
		3.3.4 Summary
	References
4. Disasters in Nara Prefecture
	4.1 Introduction
	4.2 Large-Scale Slope Failure
		4.2.1 Tsubonouchi Area in Tenkawa Village
		4.2.2 Nigoridani Area in Totsukawa Village
		4.2.3 Nojiri Area in Totsukawa Village
		4.2.4 Factors of Large-Scale Slope Failures in Accretionary Complexes
			4.2.4.1 Vulnerability
			4.2.4.2 Structural Orientation
			4.2.4.3 Hydrologic Conditions
	4.3 Surface Failure
		4.3.1 Relationship with Rainfall
		4.3.2 Topographic Features
		4.3.3 Mechanism of Surface Failure
	4.4 Damages along Rivers
		4.4.1 Damage of Revetment Works and Hinterland
		4.4.2 Damage of Bridges
		4.4.3 Sediment Inflow
		4.4.4 Inundation due to River Channel Blockage
		4.4.5 Peculiar Example
	4.5 Summary
	References
5. Disasters in Wakayama Prefecture
	5.1 Introduction
	5.2 Geological Characteristics in the Southern Part of Wakayama Prefecture [1,2]
	5.3 Characteristics of Rainfall That Caused Geotechnical Disasters
	5.4 Large-Scale Slope Failures Occurred in Accretionary Prism
		5.4.1 Topography and Geological Characteristics of the Collapsed Area
		5.4.2 Large-Scale Slope Failures with Geological Structure Like Dip Slope
		5.4.3 Large-Scale Slope Failure without Geological Structure Like Dip Slope
	5.5 Surface Failures and Debris Flow in Igneous and Sedimentary Rocks
		5.5.1 Kumano Acid Igneous Rocks [9-11]
		5.5.2 Kumano Group
	5.6 Damage to Structures around Rivers
		5.6.1 Progress in River Improvement and Scale of Flood Damage
		5.6.2 Damages Caused by 'Unexpected' Heavy Rain
		5.6.3 Damage of the River Levee
		5.6.4 Collapse of EPS Backfill
		5.6.5 Bridge Damage (Pier Displacement, Overturning)
		5.6.6 River Maintenance and Damage Caused by 'Unexpected' Heavy Rains
		5.6.7 'Unexpected' Heavy Rain and Damage to Structures around Rivers
	5.7 Damage to Cultural Property
		5.7.1 Cultural Properties of Wakayama and the Damage due to Severe Tropical Storm Talas
		5.7.2 Damage to Kumano Nachi Taisha Shrine
		5.7.3 Future Tasks for Disaster Prevention of Cultural Heritages
	5.8 Summary
	References
6. Disasters in Mie Prefecture
	6.1 Introductions
	6.2 Large-Scale Slope Failures
		6.2.1 Large-Scale Slope Failure at Higashimata Valley
		6.2.2 Conditions of the Kajiyamata Valley
		6.2.3 Rainfall Conditions in the Vicinity of the Large-Scale Slope Failures
	6.3 Surface Failures
		6.3.1 Conditions of Surface Failures in the Higashi-Kishu Region
		6.3.2 Relationship between Precipitation and Slope Failures at the Higashi-Kishu Region
	6.4 World Heritage
		6.4.1 Yokogaki Pass on the Iseji Route, Kumano Kodō
		6.4.2 Damage to the Yokogaki Pass
	6.5 River Disasters [7]
		6.5.1 Omata River
		6.5.2 Ido River
		6.5.3 Kumano River and Onodani River
	6.6 Summary
	References
7. Slope Protection Measures in Japan and Restoration and Recovery Measures in the Kii Peninsula Disaster
	7.1 Introduction
	7.2 Slope Failure Protection Works in Japan
		7.2.1 Classification and Definition of Slopes and Sediment Disasters
		7.2.2 Outline of Slope Protection Works
		7.2.3 Measures for Slope Failure
		7.2.4 Measures for Rockfall
		7.2.5 Measures against Bedrock Collapse
		7.2.6 Measures for Landslide
		7.2.7 Measures for Debris Flow
	7.3 Slope Rehabilitation and Reconstruction Project in the Kii Peninsula Disaster
		7.3.1 Slope Rehabilitation and Reconstruction Project in Nara Prefecture
			7.3.1.1 Measures after a Major Collapse in the Akadani Area of Totsukawa Village [6-8]
			7.3.1.2 Measures after a Major Collapse in the Nagatono Area of Totsukawa Village [6,7]
			7.3.1.3 Measures after a Large-Scale Slope Failure in the Ui (Shimizu) Area of Gojo City [6,7]
		7.3.2 Restoration and Reconstruction Projects in Wakayama Prefecture
			7.3.2.1 Debris Flow Measures in the Nachi River Basin [6]
		7.3.3 Restoration and Reconstruction Projects in Mie Prefecture
			7.3.3.1 Measures after a Large-Scale Slope Failure in the Higashimata Valley Area [9]
			7.3.3.2 Measures after a Large-Scale Slope Failure in the Kajiyamata Valley Area [9]
		7.3.4 Cultural Heritage Restoration and Reconstruction Projects [10]
	7.4 Summary
	References
8. Disaster-Prevention and Mitigation Measures Following the Kii Peninsula Disaster
	8.1 Introduction
	8.2 Disaster-Prevention and Mitigation Measures Based on the Kii Peninsula Disaster
		8.2.1 Monitoring Deep-Seated Landslide Risks in Totsukawa Village
		8.2.2 Flood and Inundation Measures Taken by Shingu City and Other Local Governments
			8.2.2.1 Non-structural Measures Based on Local Characteristics
			8.2.2.2 Structural Measures to Speed Up Reconstruction
		8.2.3 Development of Kiho Town's Version of a Timeline
			8.2.3.1 Effectiveness and Issues of Self-Help and Cooperation
			8.2.3.2 The Kiho Town Timeline in Mie Prefecture
	8.3 Initiatives by Road and Railway Operators
		8.3.1 Highway Slope Health Diagnosis System during Heavy Rainfall
		8.3.2 Examination of New Standards for Responses to Heavy Rainfalls on Train Operations
			8.3.2.1 The Summary of Standards for Regulating Responses to Heavy Rainfalls on JR West Train Operations
			8.3.2.2 Setting the Standards for Regulating the Response to Heavy Rainfalls on the JR West Train Operations
			8.3.2.3 Meteorological Hazard Management System
	8.4 Summary
	References
9. Response to Sediment and Flood Disasters Caused by "Unexpected" Heavy Rainfall and Lessons Learned
	9.1 Introduction
	9.2 Consider the "Unexpected"
	9.3 Recommendations on Disaster Forms
		9.3.1 Sediment Disasters
			9.3.1.1 Know the Relationship among Rainfall Patterns, Geologic Conditions, and Sediment Disasters
			9.3.1.2 Predict Sediment Disasters
			9.3.1.3 Build Partnerships for Sediment Disaster Mitigation
			9.3.1.4 Identify the Disaster Resilience of the Target Site and Utilize a Monitoring System
		9.3.2 Flood Disasters
			9.3.2.1 Learn from Past Flood Traces and History
			9.3.2.2 Pass on Local Flood Lore to Future Generations
			9.3.2.3 Recognize the Possibility That "Unexpected" Events May Occur
			9.3.2.4 Know the Capabilities and Limitations of Current Flood Protection Measures
			9.3.2.5 Know the Functions and Limitations of Facilities around Rivers during Floods
			9.3.2.6 Recognize the Importance of Facilities around Rivers during Floods
	9.4 Recommendations on External Forces That Caused the Disaster
		9.4.1 Rainfall
			9.4.1.1 Consider Disaster-Prevention Measures in Response to Rainfall Patterns
		9.4.2 River Water Level
			9.4.2.1 Analyze the Situation, and Build an Evacuation System Based on Rainfall Data over a Wider Area
	9.5 Recommendations for Disaster Emergency Response and Recovery Activities
		9.5.1 Establish a System That Allows Both the Public and Private Sectors to Respond Immediately to Assess the Actual Damage in the Event of a Large-Scale Disaster
		9.5.2 Establish a Disaster-Related Information Database
		9.5.3 Utilize the Experiences and Information of Those Who Have Responded to Disasters
		9.5.4  Organize a Manual for the Findings Related to Geological Investigations Accumulated at Large-Scale Slope Failure and Debris Flow Sites
	9.6 Proposals for Emergency Response Technologies
		9.6.1 Record and Preserve the Location and Magnitude of the Disasters
		9.6.2 Establish a Restoration Plan for the Facility Based on the Actual Disaster Conditions
		9.6.3 Evacuate to an Appropriate Evacuation Site in a Timely Manner
		9.6.4 Conduct Disaster Drills That Sustain Residents' Interest
	9.7 Proposals for the Preservation of Cultural Heritage
		9.7.1 Develop a Centralized Management System and Legislation for the Conservation of World Heritage Sites
		9.7.2 Form a Common Understanding of Cultural Heritage Disaster Prevention
		9.7.3 Improve the Efficiency of Cultural Heritage Maintenance Work
		9.7.4 Consider Crisis Management for Important Cultural Heritage
		9.7.5 Consider Cultural Heritage Disaster Prevention Multilateraly
		9.7.6 Improve the Level of Disaster Preparedness by Use of Monitoring Technology
		9.7.7 Create a Social Consensus That Cultural Heritage That Cannot Be Fully Restored Is also Valuable
	9.8 Recommendations for Local Residents
		9.8.1 Recognize That Disasters Can Occur Anywhere
		9.8.2 Prepare for Disasters on a Daily Basis
		9.8.3 Enhance Local Disaster Preparedness
		9.8.4 Communicate the Experience of the Disaster
		9.8.5 Consider Disasters as Tourism Resources
	9.9 Summary
	Reference
Index




نظرات کاربران