دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Trevor A. Cohen, Vimla L. Patel, Edward H. Shortliffe سری: Cognitive Informatics in Biomedicine and Healthcare ISBN (شابک) : 3031091078, 9783031091070 ناشر: Springer سال نشر: 2022 تعداد صفحات: 606 [607] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Intelligent Systems in Medicine and Health: The Role of AI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هوشمند در پزشکی و سلامت: نقش هوش مصنوعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی بهطور جامع آخرین روشها و کاربردهای هوش مصنوعی (AI) در پزشکی را پوشش میدهد و این پیشرفتها را در یک زمینه تاریخی قرار میدهد. عواملی که به یک تکنیک خاص برای بهبود مراقبت از بیمار از دیدگاه انفورماتیک شناختی کمک میکنند یا مانع آن میشوند، شناسایی شدهاند و روشهای مرتبط و کاربردهای بالینی در زمینههایی از جمله بیوانفورماتیک ترجمهای و پزشکی دقیق مورد بحث قرار میگیرند. این رویکرد خواننده را قادر میسازد تا به درک دقیقی از نقاط قوت و محدودیتهای این فناوریهای نوظهور و نحوه ارتباط آنها با رویکردها و سیستمهای قبل از آنها دست یابد.
با موضوعاتی که شامل آنها میشود. سیستمهای مبتنی بر دانش، شناخت بالینی، یادگیری ماشین و پردازش زبان طبیعی، سیستمهای هوشمند در پزشکی و سلامت: نقش هوش مصنوعی مجموعهای از جدیدترین ابزارها و فناوریهای هوش مصنوعی را شرح میدهد. در داخل پزشکی مطالب پیشنهادی اضافی و سوالات مرور نکات کلیدی تحت پوشش را تقویت می کند و اطمینان می دهد که خوانندگان می توانند دانش خود را بیشتر توسعه دهند. این موضوع آن را به منبعی ضروری برای همه کسانی تبدیل می کند که به دنبال اطلاعات به روز در مورد موضوع هوش مصنوعی در پزشکی هستند و مبنایی مناسب برای توسعه مواد درسی دوره کارشناسی ارشد و کارشناسی فراهم می کند.
< span>This textbook comprehensively covers the latest state-of-the-art methods and applications of artificial intelligence (AI) in medicine, placing these developments into a historical context. Factors that assist or hinder a particular technique to improve patient care from a cognitive informatics perspective are identified and relevant methods and clinical applications in areas including translational bioinformatics and precision medicine are discussed. This approach enables the reader to attain an accurate understanding of the strengths and limitations of these emerging technologies and how they relate to the approaches and systems that preceded them.
With topics covered including knowledge-based systems, clinical cognition, machine learning and natural language processing, Intelligent Systems in Medicine and Health: The Role of AI details a range of the latest AI tools and technologies within medicine. Suggested additional readings and review questions reinforce the key points covered and ensure readers can further develop their knowledge. This makes it an indispensable resource for all those seeking up-to-date information on the topic of AI in medicine, and one that provides a sound basis for the development of graduate and undergraduate course materials.
Foreword Preface The State of AI in Medicine Introducing Intelligent Systems in Medicine and Health: The Role of AI Structure and Content Guide to Use of This Book Acknowledgments Contents Contributors Part I: Introduction Chapter 1: Introducing AI in Medicine The Rise of AIM Knowledge-Based Systems Neural Networks and Deep Learning Machine Learning and Medical Practice The Scope of AIM From Accurate Predictions to Clinically Useful AIM The Cognitive Informatics Perspective Why CI? The Complementarity of Human and Machine Intelligence Mediating Safe and Effective Human Use of AI-Based Tools Concluding Remarks References Chapter 2: AI in Medicine: Some Pertinent History Introduction Artificial Intelligence: The Early Years Modern History of AI AI Meets Medicine and Biology: The 1960s and 1970s Emergence of AIM Research at Stanford University Three Influential AIM Research Projects from the 1970s INTERNIST-1/QMR CASNET MYCIN Cognitive Science and AIM Reflecting on the 1970s Evolution of AIM During the 1980s and 1990s AI Spring and Summer Give Way to AI Winter AIM Deals with the Tumult of the 80s and 90s The Last 20 Years: Both AI and AIM Come of Age References Chapter 3: Data and Computation: A Contemporary Landscape Understanding the World Through Data and Computation Types of Data Relevant to Biomedicine Knowing Through Computation Motivational Example Computational Landscape Knowledge Representation Machine Learning Data Integration to Better Understand Medicine: Multimodal, Multi-Scale Models Distributed/Networked Computing Data Federation Models Interoperability Computational Aspects of Privacy Trends and Future Challenges Ground Truth Open Science and Mechanisms for Open data Data as a Public Good References Part II: Approaches Chapter 4: Knowledge-Based Systems in Medicine What Is a Knowledge-Based System? How Is Knowledge Represented in a Computer? Rules: Inference Steps Patterns: Matching Probabilistic Models Naive Bayes Bayesian Networks Decision Analysis and Influence Diagrams Causal Mechanisms: How Things Work How Is Knowledge Acquired? Ontologies and Their Tools Knowledge in the Era of Machine Learning Incorporating Knowledge into Machine Learning Models Graph-Based Models Graph Representation Learning Biomedical Applications of Graph Machine Learning Text-Based Models Leveraging Expert Systems to Train Models Looking Forward References Chapter 5: Clinical Cognition and AI: From Emulation to Symbiosis Augmenting Human Expertise: Motivating Examples Cognitive Science and Clinical Cognition Symbolic Representations of Clinical Information Clinical Text Understanding Clinical Cognition, Reasoning and the Evolution of AI Bridging Cognition to Medical Reasoning Models of Medical Reasoning Knowledge Organization, Expert Perception and Memory Understanding Clinical Practice for AI Systems The Role of Distributed Cognition AI, Machine Learning, and Human Cognition Reinforcing the Human Component Augmenting Clinical Comprehension Supporting Specific Cognitive Tasks Mental Models of AI Systems Conclusion References Chapter 6: Machine Learning Systems Identifying Problems Suited to Machine Learning The Machine Learning Workflow: Components of a Machine Learning Solution Evaluating Machine Learning Models: Validation Metrics Supervised Machine Learning The Structure of a Supervised Machine Learning Algorithm Supervised Learning: A Mathematical Formulation Augmenting Feature Representations: Basis Function Expansion Bias and Variance Regularization: Ridge and Lasso Regression Linear Models for Classification Discriminative Models: Logistic Regression Regularized Logistic Regression: Ridge and Lasso Models A Simple Clinical Example of Logistic Regression A Multivariate Clinical Example of Logistic Regression Generative Models: Gaussian Discriminant Analysis Factored Generative Models: Naive Bayes Bias and Variance in Generative Models Recap of Parametric Linear Models for Classification Non-linear Models Kernel Methods Similarity Functions for Kernel Methods Recap: How to Use Kernels for Classification Sparse Kernel Machines and Maximum Margin Classifiers Neural Networks: Stacked Logistic Models Parameterizing Feedforward Networks and the Forward Propagation Algorithm Learning the Parameters of a Feedforward Network Convolutional Networks Other Network Architectures Putting It All Together: The Workflow for Training Deep Neural Networks Ensembling Models Conclusion References Chapter 7: Natural Language Processing Introduction to NLP and Basic Linguistics Information Common Biomedical NLP Tasks and Methods Overview of Biomedical NLP Tasks Biomedical IE Tasks and Methods NER Examples and Methods RE Examples and Methods CN Examples and Methods Current Biomedical NLP Tools and Corpora Biomedical NLP Tools Biomedical Text Resources Types of Biomedical Text Annotated Corpora from Past Challenges Applications, Challenges and Future Directions Applications of NLP Challenges and Future Directions Conclusion References Chapter 8: Explainability in Medical AI Introduction Current Trends in AI Explainability Research Applying Additional Context to Understand Explainability in Medical AI Three Purposes of AI Explainability Expanding the Conception of AI Explainability Based on Cognitive Informatics Human Information Processing Human-AI Agents Sociotechnical Systems Implications of Explainability on Bias and the Regulatory Environment Explainability and Inherent Biases Effect of Explainability on Accountability for Decision Making The Current Regulatory Framework and Explainability Application of Explainability to Real World Examples of Medical AI Example: Continuous Blood Glucose Monitoring for Patients with Type 1 Diabetes Example: Digital Image Analysis Tools Assisting in Histopathological Diagnoses Example: Wearable Devices Informing Clinical Management Conclusion References Chapter 9: Intelligent Agents and Dialog Systems Introduction to Dialog Systems Definitions and Scope What’s Hard About Getting Machines to Engage in Spontaneous Human Conversation? Machine Learning and Dialog Systems History of Dialog Systems in Healthcare Dialog System Technology Classic Symbolic Pipeline Architectures Neural Network Methods and End-to-End Architectures Approaches to Dialog System Evaluation Evaluation of Pipeline Architectures Automated Metrics for End-to-End Architectures System-Level Evaluation Example Patient- and Consumer-Facing Dialog Systems Example Provider-Facing Dialog Systems Safety Issues in Dialog Systems for Healthcare State of the Art: What We Currently Can and Can’t Do Future Directions Conclusion References Part III: Applications Chapter 10: Integration of AI for Clinical Decision Support Challenges Faced by Clinicians Artificial Intelligence-Based CDS Degree of Automation in AI-CDS Application of AI-CDS in Clinical Care Pitfalls of AI-CDS Regulation of AI-CDS Conclusions References Chapter 11: Predicting Medical Outcomes Clinical Outcomes: An Enlarged Perspective AI Approaches for Clinical Outcomes Prediction Preprocessing: Missing Values, Features Transformation and Latent Variables Extraction Missing Values Dimensionality Reduction and Feature Transformation Deep Learning Classification Regression Survival Analysis Time Lines and Trajectory Modeling Markov Models Performance Assessment Experimental Design for Learning Common Mistakes in the Design of Experimental Validation Experimental Design for Testing: External Validation Checking Performance Stability, Model Drifts, Diagnostics, and Model Revision Case Studies and Examples Type 2 Diabetes Myelodysplastic Syndromes The COVID-19 Pandemic Conclusion References Chapter 12: Interpreting Medical Images Overview Introduction to Medical Images Characteristics of Medical Images Historical Perspectives Pioneer CAD Systems Recent Successes in Deep Learning Clinical Needs and Existing Challenges Clinical Needs Medical Applications Technical Barriers Opportunities and Emerging Techniques Acquiring Annotation from Human Experts Utilizing Annotation by Advanced Models Extracting Features from Unannotated Images Conclusion References Chapter 13: Public Health Applications Public Health and AI Public Health, Essential Public Health Functions, and Public Health Informatics The Nature of Essential Public Health Functions and the Application of AI A Vision for AI in Public Health Applications of AI in Public Health Examples of AI Applications to Public Health Functions Assessment Policy Development Assurance Barriers and Risks to AI Applications in Public Health Future Applications of AI in Public Health Progress Towards the Vision Future Applications References Chapter 14: AI in Translational Bioinformatics and Precision Medicine Introduction and Concepts A Brief History of Translational Bioinformatics Concepts of AI in Translational Bioinformatics Primary Data Categories in Translational Bioinformatics Genomic Data Clinomic Data Phenotypic Data Categorizing AI Applications in Translational Bioinformatics G2G (Genomic to Genomic) G2P (Genomic to Phenotypic): Genome-Wide Association Studies (GWAS) P2P (Phenotypic to Phenotypic): Identify Disease Genomic Subtypes P2C (Phenotypic to Clinomic) C2C (Clinomic to Clinomic) Informatics Challenges in Translational Bioinformatics Big Data Characteristics Volume of Data Veracity of Data Variability of Data Velocity of Data Social-Economic Bias Domain Knowledge Representation and Interpretability Model Robustness and Quality Control Translational Bioinformatics Tools & Infrastructure Extended Data Management Systems Data Preprocessing Pipelines Pipelines to Build the Data Matrix Enhancing the Data Matrix Supervised and Unsupervised Learning Popular Algorithms in Translational Bioinformatics Classification Algorithms Clustering Algorithms Dimension Reduction Algorithms Association Mining Algorithms Security, Privacy, and Ethical Considerations (see also Chap. 18) Team Data Science Infrastructure Applications of AI in Translational Bioinformatics Improving Translational Bioinformatics Data Infrastructure Inferring Pairwise Molecular Regulation Inferring and Characterizing Cellular Signaling Mechanism that Determines the Cellular Response Identifying and Characterizing New Cell Types and Subtypes Drug Repurposing Supporting Clinical Decisions with Bioinformatics Analysis Predicting Complex Biochemical Structures Trends and Outlook References Chapter 15: Health Systems Management Promise of AI in Health Systems Example: Outpatient Scheduling Example: Device Monitoring Governance Concluding Remarks References Chapter 16: Intelligent Systems in Learning and Education Introduction Historical Evolution of Medical Education: Philosophical Perspectives and Related Educational Strategies Acquisition of Clinical Competence Cognitive Approaches to Learning and Instruction Approaches to Artificial Intelligence in Education and Training Artificial Intelligence Systems and the Individual Learner Computable Representations Intelligent Tutoring Systems Dialog Systems and Natural Language Processing Question Generation Dynamic Assessment, Feedback, and Guidance Machine Learning and Neural Networks Affect and Emotion Aware ITS Virtual and Augmented Reality Simulations and Serious Games Artificial Intelligence Systems and the Education Enterprise Learning Analytics Ethics and Regulation Technology Acceptance and Implementation Artificial Intelligence Systems in the Future Workplace The Road Ahead: Opportunities and Challenges for Intelligent Systems in Training, Learning and Practice References Part IV: The Future of AI in Medicine: Prospects and Challenges Chapter 17: Framework for the Evaluation of Clinical AI Systems The Role of Evaluation: Why It Is Important Framing Questions for Assessing an Evaluation Plan Design and Iteration Cognitive Evaluation Methods Delivery of Decision Support Medical Device Data-Interpretation Event Monitoring and Alerts Direct Consultation with Clinical User Naturalistic Studies Is the System Accepted by Users? Does the System Have a Positive Impact on User Behavior? Do Patients Benefit When the System Is Used? Is Any Positive Outcome Worth the Associated Expense? Do All Patients Benefit? What Is the Impact on the Population as a Whole? Additional Considerations References Chapter 18: Ethical and Policy Issues Introduction to the Utility of Applied Ethics Software Engineering Principles, Standards and Best Practices Software Engineering of Dependable Systems Ethics in Good Engineering Practice Why Context Matters Trust and Trustworthiness Explainability and Interpretability Transparency The Need for Human Control Taking the Long View Fairness and Sources of Bias Fairness, Bias, Equality, Equity Data Sets Algorithmic Design Implementation and Algorithmovigilance Organizational and Economic Dimensions Recommendations for Identifying Bias Governance and Oversight AI at Large AI, Humanity, and Society AI and the Healthcare Professions References Chapter 19: Anticipating the Future of Artificial Intelligence in Medicine and Health Care: A Clinical Data Science Perspective Introduction AI in Medicine Technology: An Exponential Rise Current State Near Future State Future State The AI in Medicine Stakeholders: Increasing Gap to Technology Current State Near Future State Future State The AI in Medicine Dyads: Synergy and Beyond The Human-Human Dyad The Machine-Machine Dyad The Human-Machine Dyad Conclusion: Convolution to Consilience References Chapter 20: Reflections and Projections Introduction Explainability and Complementarity Restoring Knowledge to AIM Forward-Thinking Clinical Applications Workflow, and the Workforce Evaluation Concluding Remarks References Terms and Definitions Index