دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Priyadarshi. Neeraj, Bhoi. Akash Kumar, Padmanaban. Sanjeevikumar, Balamurugan. S., Holm-Nielsen. Jens Bo, , Akash Kumar Bhoi, Sanjeevikumar Padmanaban سری: ISBN (شابک) : 9781119786276 ناشر: John Wiley & Sons, Incorporated سال نشر: 2021 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Intelligent Renewable Energy Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هوشمند انرژی های تجدیدپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Optimization Algorithm for Renewable Energy Integration 1.1 Introduction 1.2 Mixed Discrete SPBO 1.2.1 SPBO Algorithm 1.2.2 Performance of SPBO for Solving Benchmark Functions 1.2.3 Mixed Discrete SPBO 1.3 Problem Formulation 1.3.1 Objective Functions 1.3.2 Technical Constraints Considered 1.4 Comparison of the SPBO Algorithm in Terms of CEC-2005 Benchmark Functions 1.5 Optimum Placement of RDG and Shunt Capacitor to the Distribution Network 1.5.1 Optimum Placement of RDGs and Shunt Capacitors to 33-Bus Distribution Network 1.5.2 Optimum Placement of RDGs and Shunt Capacitors to 69-Bus Distribution Network 1.6 Conclusions References 2 Chaotic PSO for PV System Modelling 2.1 Introduction 2.2 Proposed Method 2.3 Results and Discussions 2.4 Conclusions References 3 Application of Artificial Intelligence and Machine Learning Techniques in Island Detection in a Smart Grid 3.1 Introduction 3.1.1 Distributed Generation Technology in Smart Grid 3.1.2 Microgrids 3.1.2.1 Problems with Microgrids 3.2 Islanding in Power System 3.3 Island Detection Methods 3.3.1 Passive Methods 3.3.2 Active Methods 3.3.3 Hybrid Methods 3.3.4 Local Methods 3.3.5 Signal Processing Methods 3.3.6 Classifer Methods 3.4 Application of Machine Learning and Artificial Intelligence Algorithms in Island Detection Methods 3.4.1 Decision Tree 3.4.1.1 Advantages of Decision Tree 3.4.1.2 Disadvantages of Decision Tree 3.4.2 Artificial Neural Network 3.4.2.1 Advantages of Artificial Neural Network 3.4.2.2 Disadvantages of Artificial Neural Network 3.4.3 Fuzzy Logic 3.4.3.1 Advantages of Fuzzy Logic 3.4.3.2 Disadvantages of Fuzzy Logic 3.4.4 Artificial Neuro-Fuzzy Inference System 3.4.4.1 Advantages of Artificial Neuro-Fuzzy Inference System 3.4.4.2 Disadvantages of Artificial Neuro-Fuzzy Inference System 3.4.5 Static Vector Machine 3.4.5.1 Advantages of Support Vector Machine 3.4.5.2 Disadvantages of Support Vector Machine 3.4.6 Random Forest 3.4.6.1 Advantages of Random Forest 3.4.6.2 Disadvantages of Random Forest 3.4.7 Comparison of Machine Learning and Artificial Intelligence Based Island Detection Methods with Other Methods 3.5 Conclusion References 4 Intelligent Control Technique for Reduction of Converter Generated EMI in DG Environment 4.1 Introduction 4.2 Grid Connected Solar PV System 4.2.1 Grid Connected Solar PV System 4.2.2 PhotoVoltaic Cell 4.2.3 PhotoVoltaic Array 4.2.4 PhotoVoltaic System Configurations 4.2.4.1 Centralized Configurations 4.2.4.2 Master Slave Configurations 4.2.4.3 String Configurations 4.2.4.4 Modular Configurations 4.2.5 Inverter Integration in Grid Solar PV System 4.2.5.1 Voltage Source Inverter 4.2.5.2 Current Source Inverter 4.3 Control Strategies for Grid Connected Solar PV System 4.3.1 Grid Solar PV System Controller 4.3.1.1 Linear Controllers 4.3.1.2 Non-Linear Controllers 4.3.1.3 Robust Controllers 4.3.1.4 Adaptive Controllers 4.3.1.5 Predictive Controllers 4.3.1.6 Intelligent Controllers 4.4 Electromagnetic Interference 4.4.1 Mechanisms of Electromagnetic Interference 4.4.2 Effect of Electromagnetic Interference 4.5 Intelligent Controller for Grid Connected Solar PV System 4.5.1 Fuzzy Logic Controller 4.6 Results and Discussion 4.6.1 Generated EMI at the Input Side of Grid SPV System 4.7 Conclusion References 5 A Review of Algorithms for Control and Optimization for Energy Management of Hybrid Renewable Energy Systems 5.1 Introduction 5.2 Optimization and Control of HRES 5.3 Optimization Techniques/Algorithms 5.3.1 Genetic Algorithms (GA) 5.4 Use of GA In Solar Power Forecasting 5.5 PV Power Forecasting 5.5.1 Short-Term Forecasting 5.5.2 Medium Term Forecasting 5.5.3 Long Term Forecasting 5.6 Advantages 5.7 Disadvantages 5.8 Conclusion Appendix A: List of Abbreviations References 6 Integration of RES with MPPT by SVPWM Scheme 6.1 Introduction 6.2 Multilevel Inverter Topologies 6.2.1 Cascaded H-Bridge (CHB) Topology 6.2.1.1 Neutral Point Clamped (NPC) Topology 6.2.1.2 Flying Capacitor (FC) Topology 6.3 Multilevel Inverter Modulation Techniques 6.3.1 Fundamental Switching Frequency (FSF) 6.3.1.1 Selective Harmonic Elimination Technique for MLIs 6.3.1.2 Nearest Level Control Technique 6.3.1.3 Nearest Vector Control Technique 6.3.2 Mixed Switching Frequency PWM 6.3.3 High Level Frequency PWM 6.3.3.1 CBPWM Techniques for MLI 6.3.3.2 Pulse Width Modulation Algorithms Using Space Vector Techniques for Multilevel Inverters 6.4 Grid Integration of Renewable Energy Sources (RES) 6.4.1 Solar PV Array 6.4.2 Maximum Power Point Tracking (MPPT) 6.4.3 Power Control Scheme 6.5 Simulation Results 6.6 Conclusion References 7 Energy Management of Standalone Hybrid Wind-PV System 7.1 Introduction 7.2 Hybrid Renewable Energy System Configuration & Modeling 7.3 PV System Modeling 7.4 Wind System Modeling 7.5 Modeling of Batteries 7.6 Energy Management Controller 7.7 Simulation Results and Discussion 7.7.1 Simulation Response at Impulse Change in Wind Speed, Successive Increase in Irradiance Level and Impulse Change in Load 7.8 Conclusion References 8 Optimization Technique Based Distribution Network Planning Incorporating Intermittent Renewable Energy Sources 8.1 Introduction 8.2 Load and WTDG Modeling 8.2.1 Modeling of Load Demand 8.2.2 Modeling of WTDG 8.3 Objective Functions 8.3.1 System Voltage Enhancement Index (SVEI) 8.3.2 Economic Feasibility Index (EFI) 8.3.3 Emission Cost Reduction Index (ECRI) 8.4 Mathematical Formulation Based on Fuzzy Logic 8.4.1 Fuzzy MF for SVEI 8.4.2 Fuzzy MF for EFI 8.4.3 Fuzzy MF for ECRI 8.5 Solution Algorithm 8.5.1 Standard RTO Technique 8.5.2 Discrete RTO (DRTO) Algorithm 8.5.3 Computational Flow 8.6 Simulation Results and Analysis 8.6.1 Obtained Results for Different Planning Cases 8.6.2 Analysis of Voltage Profile and Power Flow Under the Worst Case Scenarios: 8.6.3 Comparison Between Different Algorithms 8.6.3.1 Solution Quality 8.6.3.2 Computational Time 8.6.3.3 Failure Rate 8.6.3.4 Convergence Characteristics 8.6.3.5 Wilcoxon Signed Rank Test (WSRT) 8.7 Conclusion References 9 User Interactive GUI for Integrated Design of PV Systems 9.1 Introduction 9.2 PV System Design 9.2.1 Design of a Stand-Alone PV System 9.2.1.1 Panel Size Calculations 9.2.1.2 Battery Sizing 9.2.1.3 Inverter Design 9.2.1.4 Loss of Load 9.2.1.5 Average Daily Units Generated 9.2.2 Design of a Grid-Tied PV System 9.2.3 Design of a Large-Scale Power Plant 9.3 Economic Considerations 9.4 PV System Standards 9.5 Design of GUI 9.6 Results 9.6.1 Design of a Stand-Alone System Using GUI 9.6.2 GUI for a Grid-Tied System 9.6.3 GUI for a Large PV Plant 9.7 Discussions 9.8 Conclusion and Future Scope 9.9 Acknowledgement References 10 Situational Awareness of Micro-Grid Using Micro-PMU and Learning Vector Quantization Algorithm 10.1 Introduction 10.2 Micro Grid 10.3 Phasor Measurement Unit and Micro PMU 10.4 Situational Awareness: Perception, Comprehension and Prediction 10.4.1 Perception 10.4.2 Comprehension 10.4.3 Projection 10.5 Conclusion References 11 AI and ML for the Smart Grid Abbreviations 11.1 Introduction 11.2 AI Techniques 11.2.1 Expert Systems (ES) 11.2.2 Artificial Neural Networks (ANN) 11.2.3 Fuzzy Logic (FL) 11.2.4 Genetic Algorithm (GA) 11.3 Machine Learning (ML) 11.4 Home Energy Management System (HEMS) 11.5 Load Forecasting (LF) in Smart Grid 11.6 Adaptive Protection (AP) 11.7 Energy Trading in Smart Grid 11.8 AI Based Smart Energy Meter (AI-SEM) References 12 Energy Loss Allocation in Distribution Systems with Distributed Generations 12.1 Introduction 12.2 Load Modelling 12.3 Mathematical Model 12.4 Solution Algorithm 12.5 Results and Discussion 12.6 Conclusion References 13 Enhancement of Transient Response of Statcom and VSC Based HVDC with GA and PSO Based Controllers 13.1 Introduction 13.2 Design of Genetic Algorithm Based Controller for STATCOM 13.2.1 Two Level STACOM with Type-2 Controller 13.2.1.1 Simulation Results with Suboptimal Controller Parameters 13.2.1.2 PI Controller Without Nonlinear State Variable Feedback 13.2.1.3 PI Controller with Nonlinear State Variable Feedback 13.2.2 Structure of Type-1 Controller for 3-Level STACOM 13.2.2.1 Transient Simulation with Suboptimal Controller Parameters 13.2.3 Application of Genetic Algorithm for Optimization of Controller Parameters 13.2.3.1 Boundaries of Type-2 Controller Parameters in GA Optimization 13.2.3.2 Boundaries of Type-1 Controller Parameters in GA Optimization 13.2.4 Optimization Results of Two Level STATCOM with GA Optimized Controller Parameters 13.2.4.1 Transient Simulation with GA Optimized Controller Parameters 13.2.5 Optimization Results of Three Level STATCOM with Optimal Controller Parameters 13.2.5.1 Transient Simulation with GA Optimized Controller Parameters 13.3 Design of Particle Swarm Optimization Based Controller for STATCOM 13.3.1 Optimization Results of Two Level STATCOM with GA and PSO Optimized Parameters 13.4 Design of Genetic Algorithm Based Type-1 Controller for VSCHVDC 13.4.1 Modeling of VSC HVDC 13.4.1.1 Converter Controller 13.4.2 A Case Study 13.4.2.1 Transient Simulation with Suboptimal Controller Parameters 13.4.3 Design of Controller Using GA and Simulation Results 13.4.3.1 Description of Optimization Problem and Application of GA 13.5 Conclusion References 14 Short Term Load Forecasting for CPP Using ANN 14.1 Introduction 14.1.1 Captive Power Plant 14.1.2 Gas Turbine 14.2 Working of Combined Cycle Power Plant 14.3 Implementation of ANN for Captive Power Plant 14.4 Training and Testing Results 14.4.1 Regression Plot 14.4.2 The Performance Plot 14.4.3 Error Histogram 14.4.4 Training State Plot 14.4.5 Comparison between the Predicted Load and Actual Load 14.5 Conclusion 14.6 Acknowlegdement References 15 Real-Time EVCS Scheduling Scheme by Using GA Nomenclature 15.1 Introduction 15.2 EV Charging Station Modeling 15.2.1 Parts of the System 15.2.2 Proposed EV Charging Station 15.2.3 Proposed Charging Scheme Cycle 15.3 Real Time System Modeling for EVCS 15.3.1 Scenario 1 15.3.2 Design of Scenario 1 15.3.3 Scenario 2 15.3.4 Design of Scenario 2 15.3.5 Simulation Settings 15.4 Results and Discussion 15.4.1 Influence on Average Waiting Time 15.4.1.1 Early Morning 15.4.1.2 Forenoon 15.4.1.3 Afternoon 15.4.2 Influence on Number of Charged EV 15.5 Conclusion References About the Editors Index Also of Interest EULA