ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Intelligent Renewable Energy Systems

دانلود کتاب سیستم های هوشمند انرژی های تجدیدپذیر

Intelligent Renewable Energy Systems

مشخصات کتاب

Intelligent Renewable Energy Systems

ویرایش:  
نویسندگان: , , , , , , ,   
سری:  
ISBN (شابک) : 9781119786276 
ناشر: John Wiley & Sons, Incorporated 
سال نشر: 2021 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 54,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Intelligent Renewable Energy Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های هوشمند انرژی های تجدیدپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half-Title Page
Series Page
Title Page
Copyright Page
Contents
Preface
1 Optimization Algorithm for Renewable Energy Integration
	1.1 Introduction
	1.2 Mixed Discrete SPBO
		1.2.1 SPBO Algorithm
		1.2.2 Performance of SPBO for Solving Benchmark Functions
		1.2.3 Mixed Discrete SPBO
	1.3 Problem Formulation
		1.3.1 Objective Functions
		1.3.2 Technical Constraints Considered
	1.4 Comparison of the SPBO Algorithm in Terms of CEC-2005 Benchmark Functions
	1.5 Optimum Placement of RDG and Shunt Capacitor to the Distribution Network
		1.5.1 Optimum Placement of RDGs and Shunt Capacitors to 33-Bus Distribution Network
		1.5.2 Optimum Placement of RDGs and Shunt Capacitors to 69-Bus Distribution Network
	1.6 Conclusions
	References
2 Chaotic PSO for PV System Modelling
	2.1 Introduction
	2.2 Proposed Method
	2.3 Results and Discussions
	2.4 Conclusions
	References
3 Application of Artificial Intelligence and Machine Learning Techniques in Island Detection in a Smart Grid
	3.1 Introduction
		3.1.1 Distributed Generation Technology in Smart Grid
		3.1.2 Microgrids
			3.1.2.1 Problems with Microgrids
	3.2 Islanding in Power System
	3.3 Island Detection Methods
		3.3.1 Passive Methods
		3.3.2 Active Methods
		3.3.3 Hybrid Methods
		3.3.4 Local Methods
		3.3.5 Signal Processing Methods
		3.3.6 Classifer Methods
	3.4 Application of Machine Learning and Artificial Intelligence Algorithms in Island Detection Methods
		3.4.1 Decision Tree
			3.4.1.1 Advantages of Decision Tree
			3.4.1.2 Disadvantages of Decision Tree
		3.4.2 Artificial Neural Network
			3.4.2.1 Advantages of Artificial Neural Network
			3.4.2.2 Disadvantages of Artificial Neural Network
		3.4.3 Fuzzy Logic
			3.4.3.1 Advantages of Fuzzy Logic
			3.4.3.2 Disadvantages of Fuzzy Logic
		3.4.4 Artificial Neuro-Fuzzy Inference System
			3.4.4.1 Advantages of Artificial Neuro-Fuzzy Inference System
			3.4.4.2 Disadvantages of Artificial Neuro-Fuzzy Inference System
		3.4.5 Static Vector Machine
			3.4.5.1 Advantages of Support Vector Machine
			3.4.5.2 Disadvantages of Support Vector Machine
		3.4.6 Random Forest
			3.4.6.1 Advantages of Random Forest
			3.4.6.2 Disadvantages of Random Forest
		3.4.7 Comparison of Machine Learning and Artificial Intelligence Based Island Detection Methods with Other Methods
	3.5 Conclusion
	References
4 Intelligent Control Technique for Reduction of Converter Generated EMI in DG Environment
	4.1 Introduction
	4.2 Grid Connected Solar PV System
		4.2.1 Grid Connected Solar PV System
		4.2.2 PhotoVoltaic Cell
		4.2.3 PhotoVoltaic Array
		4.2.4 PhotoVoltaic System Configurations
			4.2.4.1 Centralized Configurations
			4.2.4.2 Master Slave Configurations
			4.2.4.3 String Configurations
			4.2.4.4 Modular Configurations
		4.2.5 Inverter Integration in Grid Solar PV System
			4.2.5.1 Voltage Source Inverter
			4.2.5.2 Current Source Inverter
	4.3 Control Strategies for Grid Connected Solar PV System
		4.3.1 Grid Solar PV System Controller
			4.3.1.1 Linear Controllers
			4.3.1.2 Non-Linear Controllers
			4.3.1.3 Robust Controllers
			4.3.1.4 Adaptive Controllers
			4.3.1.5 Predictive Controllers
			4.3.1.6 Intelligent Controllers
	4.4 Electromagnetic Interference
		4.4.1 Mechanisms of Electromagnetic Interference
		4.4.2 Effect of Electromagnetic Interference
	4.5 Intelligent Controller for Grid Connected Solar PV System
		4.5.1 Fuzzy Logic Controller
	4.6 Results and Discussion
		4.6.1 Generated EMI at the Input Side of Grid SPV System
	4.7 Conclusion
	References
5 A Review of Algorithms for Control and Optimization for Energy Management of Hybrid Renewable Energy Systems
	5.1 Introduction
	5.2 Optimization and Control of HRES
	5.3 Optimization Techniques/Algorithms
		5.3.1 Genetic Algorithms (GA)
	5.4 Use of GA In Solar Power Forecasting
	5.5 PV Power Forecasting
		5.5.1 Short-Term Forecasting
		5.5.2 Medium Term Forecasting
		5.5.3 Long Term Forecasting
	5.6 Advantages
	5.7 Disadvantages
	5.8 Conclusion
	Appendix A: List of Abbreviations
	References
6 Integration of RES with MPPT by SVPWM Scheme
	6.1 Introduction
	6.2 Multilevel Inverter Topologies
		6.2.1 Cascaded H-Bridge (CHB) Topology
			6.2.1.1 Neutral Point Clamped (NPC) Topology
			6.2.1.2 Flying Capacitor (FC) Topology
	6.3 Multilevel Inverter Modulation Techniques
		6.3.1 Fundamental Switching Frequency (FSF)
			6.3.1.1 Selective Harmonic Elimination Technique for MLIs
			6.3.1.2 Nearest Level Control Technique
			6.3.1.3 Nearest Vector Control Technique
		6.3.2 Mixed Switching Frequency PWM
		6.3.3 High Level Frequency PWM
			6.3.3.1 CBPWM Techniques for MLI
			6.3.3.2 Pulse Width Modulation Algorithms Using Space Vector Techniques for Multilevel Inverters
	6.4 Grid Integration of Renewable Energy Sources (RES)
		6.4.1 Solar PV Array
		6.4.2 Maximum Power Point Tracking (MPPT)
		6.4.3 Power Control Scheme
	6.5 Simulation Results
	6.6 Conclusion
	References
7 Energy Management of Standalone Hybrid Wind-PV System
	7.1 Introduction
	7.2 Hybrid Renewable Energy System Configuration & Modeling
	7.3 PV System Modeling
	7.4 Wind System Modeling
	7.5 Modeling of Batteries
	7.6 Energy Management Controller
	7.7 Simulation Results and Discussion
		7.7.1 Simulation Response at Impulse Change in Wind Speed, Successive Increase in Irradiance Level and Impulse Change in Load
	7.8 Conclusion
	References
8 Optimization Technique Based Distribution Network Planning Incorporating Intermittent Renewable Energy Sources
	8.1 Introduction
	8.2 Load and WTDG Modeling
		8.2.1 Modeling of Load Demand
		8.2.2 Modeling of WTDG
	8.3 Objective Functions
		8.3.1 System Voltage Enhancement Index (SVEI)
		8.3.2 Economic Feasibility Index (EFI)
		8.3.3 Emission Cost Reduction Index (ECRI)
	8.4 Mathematical Formulation Based on Fuzzy Logic
		8.4.1 Fuzzy MF for SVEI
		8.4.2 Fuzzy MF for EFI
		8.4.3 Fuzzy MF for ECRI
	8.5 Solution Algorithm
		8.5.1 Standard RTO Technique
		8.5.2 Discrete RTO (DRTO) Algorithm
		8.5.3 Computational Flow
	8.6 Simulation Results and Analysis
		8.6.1 Obtained Results for Different Planning Cases
		8.6.2 Analysis of Voltage Profile and Power Flow Under the Worst Case Scenarios:
		8.6.3 Comparison Between Different Algorithms
			8.6.3.1 Solution Quality
			8.6.3.2 Computational Time
			8.6.3.3 Failure Rate
			8.6.3.4 Convergence Characteristics
			8.6.3.5 Wilcoxon Signed Rank Test (WSRT)
	8.7 Conclusion
	References
9 User Interactive GUI for Integrated Design of PV Systems
	9.1 Introduction
	9.2 PV System Design
		9.2.1 Design of a Stand-Alone PV System
			9.2.1.1 Panel Size Calculations
			9.2.1.2 Battery Sizing
			9.2.1.3 Inverter Design
			9.2.1.4 Loss of Load
			9.2.1.5 Average Daily Units Generated
		9.2.2 Design of a Grid-Tied PV System
		9.2.3 Design of a Large-Scale Power Plant
	9.3 Economic Considerations
	9.4 PV System Standards
	9.5 Design of GUI
	9.6 Results
		9.6.1 Design of a Stand-Alone System Using GUI
		9.6.2 GUI for a Grid-Tied System
		9.6.3 GUI for a Large PV Plant
	9.7 Discussions
	9.8 Conclusion and Future Scope
	9.9 Acknowledgement
	References
10 Situational Awareness of Micro-Grid Using Micro-PMU and Learning Vector Quantization Algorithm
	10.1 Introduction
	10.2 Micro Grid
	10.3 Phasor Measurement Unit and Micro PMU
	10.4 Situational Awareness: Perception, Comprehension and Prediction
		10.4.1 Perception
		10.4.2 Comprehension
		10.4.3 Projection
	10.5 Conclusion
	References
11 AI and ML for the Smart Grid
	Abbreviations
	11.1 Introduction
	11.2 AI Techniques
		11.2.1 Expert Systems (ES)
		11.2.2 Artificial Neural Networks (ANN)
		11.2.3 Fuzzy Logic (FL)
		11.2.4 Genetic Algorithm (GA)
	11.3 Machine Learning (ML)
	11.4 Home Energy Management System (HEMS)
	11.5 Load Forecasting (LF) in Smart Grid
	11.6 Adaptive Protection (AP)
	11.7 Energy Trading in Smart Grid
	11.8 AI Based Smart Energy Meter (AI-SEM)
	References
12 Energy Loss Allocation in Distribution Systems with Distributed Generations
	12.1 Introduction
	12.2 Load Modelling
	12.3 Mathematical Model
	12.4 Solution Algorithm
	12.5 Results and Discussion
	12.6 Conclusion
	References
13 Enhancement of Transient Response of Statcom and VSC Based HVDC with GA and PSO Based Controllers
	13.1 Introduction
	13.2 Design of Genetic Algorithm Based Controller for STATCOM
		13.2.1 Two Level STACOM with Type-2 Controller
			13.2.1.1 Simulation Results with Suboptimal Controller Parameters
			13.2.1.2 PI Controller Without Nonlinear State Variable Feedback
			13.2.1.3 PI Controller with Nonlinear State Variable Feedback
		13.2.2 Structure of Type-1 Controller for 3-Level STACOM
			13.2.2.1 Transient Simulation with Suboptimal Controller Parameters
		13.2.3 Application of Genetic Algorithm for Optimization of Controller Parameters
			13.2.3.1 Boundaries of Type-2 Controller Parameters in GA Optimization
			13.2.3.2 Boundaries of Type-1 Controller Parameters in GA Optimization
		13.2.4 Optimization Results of Two Level STATCOM with GA Optimized Controller Parameters
			13.2.4.1 Transient Simulation with GA Optimized Controller Parameters
		13.2.5 Optimization Results of Three Level STATCOM with Optimal Controller Parameters
			13.2.5.1 Transient Simulation with GA Optimized Controller Parameters
	13.3 Design of Particle Swarm Optimization Based Controller for STATCOM
		13.3.1 Optimization Results of Two Level STATCOM with GA and PSO Optimized Parameters
	13.4 Design of Genetic Algorithm Based Type-1 Controller for VSCHVDC
		13.4.1 Modeling of VSC HVDC
			13.4.1.1 Converter Controller
		13.4.2 A Case Study
			13.4.2.1 Transient Simulation with Suboptimal Controller Parameters
		13.4.3 Design of Controller Using GA and Simulation Results
			13.4.3.1 Description of Optimization Problem and Application of GA
	13.5 Conclusion
	References
14 Short Term Load Forecasting for CPP Using ANN
	14.1 Introduction
		14.1.1 Captive Power Plant
		14.1.2 Gas Turbine
	14.2 Working of Combined Cycle Power Plant
	14.3 Implementation of ANN for Captive Power Plant
	14.4 Training and Testing Results
		14.4.1 Regression Plot
		14.4.2 The Performance Plot
		14.4.3 Error Histogram
		14.4.4 Training State Plot
		14.4.5 Comparison between the Predicted Load and Actual Load
	14.5 Conclusion
	14.6 Acknowlegdement
	References
15 Real-Time EVCS Scheduling Scheme by Using GA
	Nomenclature
	15.1 Introduction
	15.2 EV Charging Station Modeling
		15.2.1 Parts of the System
		15.2.2 Proposed EV Charging Station
		15.2.3 Proposed Charging Scheme Cycle
	15.3 Real Time System Modeling for EVCS
		15.3.1 Scenario 1
		15.3.2 Design of Scenario 1
		15.3.3 Scenario 2
		15.3.4 Design of Scenario 2
		15.3.5 Simulation Settings
	15.4 Results and Discussion
		15.4.1 Influence on Average Waiting Time
			15.4.1.1 Early Morning
			15.4.1.2 Forenoon
			15.4.1.3 Afternoon
		15.4.2 Influence on Number of Charged EV
	15.5 Conclusion
	References
About the Editors
Index
Also of Interest
EULA




نظرات کاربران