ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Intelligent Multimedia Technologies for Financial Risk Management: Trends, tools and applications

دانلود کتاب فن آوری های چند رسانه ای هوشمند برای مدیریت ریسک مالی: روندها، ابزارها و برنامه ها

Intelligent Multimedia Technologies for Financial Risk Management: Trends, tools and applications

مشخصات کتاب

Intelligent Multimedia Technologies for Financial Risk Management: Trends, tools and applications

ویرایش:  
نویسندگان: , , , ,   
سری: IET Computing Series, 60 
ISBN (شابک) : 1839536616, 9781839536618 
ناشر: The Institution of Engineering and Technology 
سال نشر: 2023 
تعداد صفحات: 373
[374] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 Mb 

قیمت کتاب (تومان) : 54,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Intelligent Multimedia Technologies for Financial Risk Management: Trends, tools and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های چند رسانه ای هوشمند برای مدیریت ریسک مالی: روندها، ابزارها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فن آوری های چند رسانه ای هوشمند برای مدیریت ریسک مالی: روندها، ابزارها و برنامه ها

این کتاب مروری بر فناوری‌های چندرسانه‌ای مورد استفاده در امور مالی و بانکداری، از جمله تکنیک‌های ML و DL برای تجزیه و تحلیل داده‌های مالی، تقلب و اقدامات متقابل عملیات سایبری، کاربردهای ملموس NPR برای داده‌های مالی، روش‌های یادگیری خود نظارت، بدون نظارت و نیمه‌نظارت و مطالعات موردی در دنیای واقعی


توضیحاتی درمورد کتاب به خارجی

This book provides an overview of multimedia technologies used in finance and banking, including ML and DL techniques for financial data analysis, fraud and cyber operation countermeasures, concrete applications of NPR for financial data, self-supervised, unsupervised & semi-supervised learning methods and real-world case studies.



فهرست مطالب

Cover
Contents
Call for Authors – The IET International Book Series on Multimedia Information Processing and Security
About the editors
Foreword – Prof. Ramona Rupeika-Apoga
Foreword – Series editors Singh and Berretti
1 Applications of multimedia in diverse fields: an overview
	Abstract
	1.1 Introduction
		1.1.1. Trends in intelligent multimedia data analytics
	1.2 Tools used in IMDA
	1.3 Application software used in IMDA
	1.4 Write an essay on using IMDA in risk management and internal controls
	1.5 The metaverse
	1.6 Medical devices
	1.7 Entertainment
	1.8 Security
	1.9 Health
	1.10 Financial services
	1.11 Insurance
	1.12 People’s needs and retail shops
	1.13 Banking services
		1.13.1 Benefits of e-banking
		1.13.2 Electronic banking protocols
		1.13.3 Services
	1.14 Machine learning
	1.15 Deep learning
	1.16 Natural language processing
	1.17 Blockchain technology
	1.18 Robotic automatic process
	1.19 Distributed computing technology
	1.20 Administrative consistence intricacies
	1.21 Future technology in finance
	1.22 Conclusion
	References
2 Evolution of multimedia banking and technology acceptance theories
	Abstract
	2.1 Introduction
	2.2 Evolution of multimedia in the banking sector
	2.3 ATMs and telephones
		2.3.1 Telecommunication – vitalization through ATM
	2.4 PCs and online services
	2.5 E-cash and interactive video
	2.6 TAM
	2.7 TRA
	2.8 Conclusion
	References
3 Banking, Fintech, BigTech: emerging challenges for multimedia adoption
	Abstract
	3.1 Introduction
	3.2 Trends and patterns of BigTech entry into emerging markets and developing economies (EMDEs)
		3.2.1 A case study of digital payment trends in India
	3.3 Drivers of BigTech activity in EMDEs
	3.4 Pros and cons of BigTech firms entering the financial services
		3.4.1 Benefits to the financial services industry from BigTech activities
		3.4.2 Risks associated with the BigTech firms to enter financial services
	3.5 Technological growth: opportunities & risks for BigTech firms in EMDEs
		3.5.1 It is the ‘DNA’ of big tech’s business strategy
		3.5.2 Access to financial services and big data
		3.5.3 Regulating the financial sector
		3.5.4 Power in the market and rivalry
		3.5.5 Coordination of policy and the need for education
	3.6 Venture capital from EMDEs in facilitating BigTech firms
		3.6.1 Meaning of venture capital
		3.6.2 Venture capitalists’ impact on BigTech management
		3.6.3 The BigTech firm and the dependency perspective
	3.7 Impact of COVID-19 on BigTech firms’ activities
	References
4 Multimedia technologies in the financial market
	Abstract
	4.1 Introduction
	4.2 Cloud-based software-as-a-service (SaaS)
	4.3 Self-service multimedia banking kiosks
		4.3.1 SSTs in banking sector: global and local contexts
	4.4 Image-enabled ATMs
	4.5 Digital account opening
		4.5.1 What does digital financial inclusion look like?
	4.6 Interactive banking portals
	4.7 Person-to-person (P2P) payments
		4.7.1 Nonbank-centric P2P payment methods
		4.7.2 Bank-centric P2P payment methods
	4.8 Chatbots/virtual personal banker
		4.8.1 Banking chatbot business
	4.9 Video banking services
	4.10 Mobile and TV-based banking
	4.11 Safe deposit boxes with iris-scanning biometrics
		4.11.1 Physiological biometrics
	4.12 Conclusion
	References
5 Data analytics in finance
	Abstract
	5.1 Forecasting economic variables through linear and nonlinear time series analysis
		5.1.1 Autoregressive dependent framework
		5.1.2 Models based on moving averages
		5.1.3 Artificial neural networks in finance
	5.2 Big data analytics tools for financial forecasting
		5.2.1 How could back groups conquer the difficulties of working with enormous amounts of information?
		5.2.2 How does robotization help enormous information examination?
		5.2.3 How can arising advances enable huge information?
		5.2.4 How can huge information change finance?
		5.2.5 What’s next for huge information in finance?
		5.2.6 About cash analytics
	5.3 Financial time series analysis
	5.4 Web analytics, visual analytics, service analytics, multimedia analytics, textual data analytics
		5.4.1 Interactive media analysis
		5.4.2 Visual analytics
		5.4.3 Multimedia analysis
		5.4.4 Interactive media analysis
		5.4.5 Visual analytics
	5.5 Predictive, prescriptive, descriptive analytics
		5.5.1 What is descriptive analytics?
		5.5.2 What does the spellbinding investigation show?
		5.5.3 Instances of expressive examination
		5.5.4 What is diagnostic analytics?
		5.5.5 What does symptomatic examination show?
		5.5.6 Instances of demonstrative examination
		5.5.7 What is predictive analytics?
		5.5.8 What does the prescient investigation show?
		5.5.9 Instances of prescient investigation
		5.5.10 What is prescriptive analytics?
		5.5.11 What does the prescriptive investigation show?
	5.6 Expert methods for financial regression and classification problems
	5.7 Factor models for big data in options stochastic modelling and pricing
		5.7.1 Bachelier design
		5.7.2 Scholes–Merton (BS) model in the dark
		5.7.3 Demand model
	5.8 Financial mathematical and statistical tools
		5.8.1 Insertion and extrapolation
		5.8.2 Decision theory
		5.8.3 Decision-making under states of assurance
		5.8.4 Decision-making under states of vulnerability
		5.8.5 Correlation analysis
		5.8.6 Cost volume benefit (CVP) or break-even investigation
		5.8.7 Tests in ventures
		5.8.8 Serial relationship tests
		5.8.9 Run tests
		5.8.10 Simulation
		5.8.11 Decision tree analysis
		5.8.12 Sampling technique
		5.8.13 Standard deviation
		5.8.14 SAP R/3 vs. ERP
		5.8.15 Modules for SAP
	5.9 Conclusion
	References
6 Machine learning and deep learning for financial data analysis
	Abstract
	6.1 Machine learning and deep learning for financial data analysis
	6.2 Graph neural networks for investor networks analysis
	6.3 Using ML to predict the defaults of credit card clients
	6.4 Application of deep learning methods for econometrics
	6.5 AI and multimedia application in finance
		6.5.1 AI & ML techniques for simulation of markets, economics, and other financial systems
		6.5.2 Infrastructure to support AI & ML research in finance
		6.5.3 Chatbots & robot advisors for payment and innovation
		6.5.4 AI/ML-based evaluating models
		6.5.5 Validation and calibration of multi-agent systems in finance
	6.6 Advance ML for financial stability
		6.6.1 AI-based blockchain in financial networks
		6.6.2 Business challenge: deep learning seen as too resource-intensive
	6.7 Credit scoring models using ML algorithms
	6.8 Python to implement methods from stochastic
	6.9 Conclusion
	References
7 Self-supervised, unsupervised & semi-supervised learning for multimedia banking and financial services
	Abstract
	7.1 Supervised learning for money-laundering prevention, document analysis and underwriting loans, trade settlements, high-frequ
		7.1.1 What exactly do detecting fraud paradigms perform?
		7.1.2 Customer experience and segmentation
		7.1.3 Underwriting and credit scoring
		7.1.4 Difficulties to industry adoption
	7.2 Robo-advisors is a tool of supervised learning for optimizing portfolios
		7.2.1 What is a Robo-advisor?
		7.2.2 Understanding Robo-advisors
		7.2.3 Portfolio rebalancing
	7.3 Fundamental advantages of Robo-advisors
	7.4 Hiring a Robo-advisor
	7.5 Robo-advisors and regulation
		7.5.1 How Robo-advisors make money
		7.5.2 The best-in-class Robo-advisors
	7.6 Component of ML
		7.6.1 What is PCA?
		7.6.2 Calculation of PCA
		7.6.3 Benefits and limitations of PCA
		7.6.4 Assumptions of PCA
		7.6.5 Practical working in PCA
		7.6.6 Production programming for cutting-edge information science
	7.7 Financial asset clustering using cluster analysis
	7.8 Latent variable modeling for financial volatility
	7.9 Association rule learning for financial revenue analysis
	7.10 Semi-regulated text mining for environmental, social, and governance
	7.11 Performance of companies
	7.12 Conclusion
	References
8 Natural language processing and multimedia applications in finance
	Abstract
	8.1 Financial technology and natural language processing
		8.1.1 NLP-based finance
	8.2 NLP-based investment management
		8.2.1 Instances of some key NLP applications in asset management
	8.3 NLP-based know your customer approach
	8.4 Applications or systems for FinTech with NLP methods
	8.5 Crowdfunding analysis with text data
	8.6 Text-oriented customer preference analysis
	8.7 Insurance application with textual information
	8.8 Telematics: motor & health insurance
		8.8.1 Telematics and automobile insurance
		8.8.2 Benefits of telematics-based auto insurance
	8.9 Text-based market provisioning
	8.10 Conclusion
	References
9 Digital disruption and multimedia technological innovations in the banking world
	Abstract
	9.1 Background of multimedia banking
	9.2 Phases of multimedia banking
	9.3 Challenges and acceptance of multimedia banking
		9.3.1 Safety and security
		9.3.2 System
		9.3.3 Significant charges
		9.3.4 Internet connection
		9.3.5 Customer awareness
		9.3.6 Cash-dominated rural society
	9.4 Acceptance for multimedia banking
		9.4.1 Convenience
		9.4.2 Confidentiality
		9.4.3 Communication with customer
		9.4.4 Personalization
		9.4.5 Add-on-services
		9.4.6 Accessibility
		9.4.7 FinTech
	9.5 Future of multimedia banking
		9.5.1 Neobanks
		9.5.2 Physical decline
		9.5.3 Thinner wallets
		9.5.4 Cardless payments
		9.5.5 Competitions with non-banks
		9.5.6 Micro-personalization
		9.5.7 Interoperability
	9.6 Multimedia banking making a prolific growth
	9.7 Reasons for rapid growth in multimedia banking
		9.7.1 Adoption of digital banking by SMEs
		9.7.2 Neobanks boosting the growth of India’s multimedia banking
		9.7.3 Mushrooming mobile banking sector giving a boost to multimedia banking
		9.7.4 Deployment types – India digital banking platform market
		9.7.5 Regional insights of multimedia banking in India
		9.7.6 The pandemic impacted multimedia banking
	9.8 Customer perspective on multimedia banking in India
		9.8.1 Demography of customers
		9.8.2 Personal banking experience
		9.8.3 Technology experience
		9.8.4 Psychology and culture
		9.8.5 Security challenges and trust
	9.9 An approach to build customer relationship management (CRM) through multimedia banking
	9.10 Real multimedia banking fraud in India
	9.11 SWOT analysis of multimedia banking
	9.12 Conclusion
	References
10 Fraud and cyber operation countermeasures for multimedia in financial services
	Abstract
	10.1 Introduction of cyber fraud
	10.2 Fraud and cyber operation countermeasures for multimedia in financial services
		10.2.1 The top cyber threats to financial services
		10.2.2 Tax evasion and tax fraud
		10.2.3 Retail cybersecurity: challenges and threats
		10.2.4 Security-operations center and network-operations center, which enable monitoring
		10.2.5 Cyber security costs, cyber breaches; confidentiality, integrity, systems availability
		10.2.6 Customer identification and authentication
	10.3 Cyber security tools and technologies
		10.3.1 Cybersecurity monitoring tools
		10.3.2 SolarWinds security event manager
		10.3.3 Heimdal
		security
		10.3.4 Packet sniffer software
	10.4 Tools for cyber fraud
		10.4.1 Safe Back
		10.4.2 The Dark Web
		10.4.3 Telegram
		10.4.4 PII
		10.4.5 Your Internet browsing “fingerprints”
		10.4.6 Burner phones
		10.4.7 Spoofing tools
		10.4.8 SOCKS5 proxies
		10.4.9 Fake driver’s licenses and documents
		10.4.10 Remote desktop protocols (RDPs)
	10.5 Tools for financial crime (anti-money laundering tools)
		10.5.1 SEON – Block bad users and stop fraud
		10.5.2 Active – smarter digital decisioning
		10.5.3 AML check – smarter digital decisioning
		10.5.4 Dow Jones – risk and compliance
		10.5.5 Feedzai – fight financial crime with AI
		10.5.6 HM treasury – official UK and EU sanctions lists
	10.6 Risk severity matrix
	10.7 Benefits of risk severity matrix
		10.7.1 Cybersecurity as a pressing concern for financial organizations
	References
11 Blockchain technology for the financial markets
	Abstract
	11.1 Key features and main applications of blockchain technology in the financial world
		11.1.1 What is the process for a transaction to be added to the blockchain?
		11.1.2 Types of blockchain
		11.1.3 Features of blockchain technology
		11.1.4 Blockchain technology’s power and its revolutionary applications in the financial sector
	11.2 Modern banking ledger with blockchain technology
		11.2.1 The blockchain’s itemised components are immutable
		11.2.2 The blockchain’s data is transparent
	11.3 Blockchain and banking business models
		11.3.1 The top 5 blockchain applications in banking
		11.3.2 Benefits of blockchain for banking
		11.3.3 Five blockchain application examples in banking
	11.4 Inherent drawbacks of digital currencies such as bitcoin
		11.4.1 Drawback 1: scalability
		11.4.2 Drawback 2: issues with cybersecurity
		11.4.3 Drawback 3: price fluctuation and a lack of inherent value
		11.4.4 Drawback 4: regulations and policies
	11.5 Potential drawbacks to using cryptocurrencies and DLTs
		11.5.1 Bitcoins are not accepted across the board
		11.5.2 Wallets can be misplaced
		11.5.3 The value of bitcoin fluctuates
		11.5.4 There is no buyer protection
		11.5.5 Technical flaws that are not known
		11.5.6 Deflation is built-in
		11.5.7 There is no physical form
		11.5.8 There is no guarantee of valuation
	11.6 Fraud detection and claims management using blockchain management
		11.6.1 Three features of blockchain which prevents frauds
		11.6.2 What types of frauds are detected?
		11.6.3 Identity fraud cases
	11.7 Cryptocurrency in the financial markets
		11.7.1 Currency
	11.8 Regulation of blockchain technology
		11.8.1 National efforts: applications developed and piloted
	11.9 Conclusion
	References
12 Automation to handle customer complaints: a grievance handling system
	Abstract
	12.1 Introduction
		12.1.1 E-complaint
		12.1.2 Service-oriented architecture
		12.1.3 Examination of the system
		12.1.4 System architecture
		12.1.5 SQL server database layer
	12.2 Literature review
	12.3 Grievance handling through integrated grievance management system (IGMS)
		12.3.1 As-is complaint handling process
		12.3.2 The disadvantage of the as-is module
	12.4 Measuring the efficiency and effectiveness of IGMS
	12.5 Transforming customer experiences and leveraging AI solutions
		12.5.1 Compensation diagnosis
	12.6 Achieving customer service excellence in claims management through technology intermediation
	12.7 Customer protection – building a robust complaint management system
		12.7.1 Education regarding workplace safety and knowledge of the value of education
	12.8 Conclusion
	References
13 Robotic process automation applications area in the financial sector
	Abstract
	13.1 Introduction contact centre optimization
	13.2 Trade finance operations
	13.3 Literature review on customer on-boarding
	13.4 Anti-money laundering (AML)
	13.5 Bank guarantee closures
	13.6 Bank reconciliation process
	13.7 Loan application process
		13.7.1 RPA abilities
	13.8 Automated report generation
	13.9 Account closure processing
		13.9.1 RPA programming
	13.10 Credit card application processing
	13.11 Conclusion
	References
14 Multimedia sustained benefits for financial services
	Abstract
	14.1 Introduction
		14.1.1 Concept of MMT
	14.2 Billings and account receivables
	14.3 Account payable
	14.4 Collections
	14.5 Cash flow management
	14.6 Tax preparation
	14.7 Cash disturbance
	14.8 Budgeting process
	14.9 Financial analysis and reporting
	14.10 Payroll administration
	14.11 Compliance
	14.12 Conclusion
	References
15 Extensive use of multimedia technologies: real-world case studies of multimedia banking
	Abstract
	15.1 Introduction
	15.2 Multimedia technologies in the banking sector
		15.2.1 Social media in banking
	15.3 Mobile banking
		15.3.1 Cases of customer experience in banking and FinTech design
	15.4 Google Pay
	15.5 PayPal
	15.6 24/7 Gadgets
		15.6.1 Banking development with ICT
	15.7 Artificial Intelligence (AI) in banking
		15.7.1 Uses of AI in banking
	15.8 Metaverse in banking
		15.8.1 The progression that resulted in metaverse in the banking sector
		15.8.2 Real-world financial use cases for the metaverse
		15.8.3 Global case studies of real-world multimedia banking
	15.9 Conclusion
	References
16 Concluding remarks—fintech and technology of today and tomorrow
	16.1 Introduction
	16.2 Virtual reality and augmented reality banking
	16.3 Digital revolution in the fintech era
	16.4 Conclusion
	References
Index
Back Cover




نظرات کاربران