دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Salvatore Greco (editor), Vincent Mousseau (editor), Jerzy Stefanowski (editor), Constantin Zopounidis (editor) سری: ISBN (شابک) : 3030963179, 9783030963170 ناشر: Springer سال نشر: 2022 تعداد صفحات: 458 [446] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Intelligent Decision Support Systems: Combining Operations Research and Artificial Intelligence - Essays in Honor of Roman Słowiński (Multiple Criteria Decision Making) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای پشتیبانی تصمیمگیری هوشمند: ترکیب تحقیق در عملیات و هوش مصنوعی - مقالات به افتخار رومن اسلووینسکی (تصمیمگیری با معیارهای چندگانه) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعهای از مقالاتی را ارائه میکند که توسط محققان برجسته برای ارج نهادن به علایق و مشارکتهای علمی اصلی رومن اسلووینسکی نوشته شدهاند. او به دلیل انجام تحقیقات گسترده در مورد روش ها و تکنیک های پشتیبانی تصمیم گیری هوشمند، که در آن تحقیقات عملیاتی و هوش مصنوعی را با هم ترکیب می کند، مشهور است. این کتاب مشارکتهای اصلی او را بازسازی میکند، تحقیقات پیشرفتهای را ارائه میکند و چشماندازی در زمینه امیدوارکنندهترین و پیشرفتهترین حوزههای علوم کامپیوتر و کمک به تصمیمگیری معیارهای چندگانه ارائه میکند. فصول مربوطه طیف وسیعی از زمینه های تحقیقاتی مرتبط را شامل می شود، از جمله علوم تصمیم گیری، داده کاوی ترتیبی، یادگیری ترجیحی و کمک به تصمیم گیری معیارهای چندگانه، مدل سازی عدم قطعیت و عدم دقت در مسائل تصمیم گیری، نظریه مجموعه های خشن، نظریه مجموعه های فازی، بهینه سازی چند هدفه، برنامه های برنامه ریزی پروژه و پشتیبانی تصمیم. به این ترتیب، این کتاب برای محققان و محققان در زمینه های مرتبط جذاب خواهد بود.
This book presents a collection of essays written by leading researchers to honor Roman Słowiński’s major scholarly interests and contributions. He is well-known for conducting extensive research on methodologies and techniques for intelligent decision support, where he combines operational research and artificial intelligence. The book reconstructs his main contributions, presents cutting-edge research and provides an outlook on the most promising and advanced domains of computer science and multiple criteria decision aiding. The respective chapters cover a wide range of related research areas, including decision sciences, ordinal data mining, preference learning and multiple criteria decision aiding, modeling of uncertainty and imprecision in decision problems, rough set theory, fuzzy set theory, multi-objective optimization, project scheduling and decision support applications. As such, the book will appeal to researchers and scholars in related fields.
Preface Acknowledgments Contents Contributors 1 Roman Słowiński and His Research Program: Intelligent Decision Support Systems Between Operations Research and Artificial Intelligence 1.1 Introduction 1.2 Short Biographical Notes 1.3 Advice and Supervision of New Researchers 1.4 The Main Research Contributions of Roman Słowiński 1.5 A Bibliometric Analysis of the Research Activity and Impact of Roman Słowiński 1.5.1 Numbers of Publications and Citations 1.5.2 The Most Cited Papers 1.5.3 Journals and Other Sources of Publications 1.5.4 Main Co-Authors 1.5.5 Most Contributed Topics 1.6 Volume's Contributions 1.7 Final Remarks References 2 Roman's Scientific Trajectory: A Retrospective with an Emphasis on the Beginning References 3 ELECTRE Methods: A Survey on Roman SłowińskiContributions 3.1 Introduction 3.2 A Brief Overview on ELECTRE Main Concepts 3.3 Roman Słowinski Contributions 3.3.1 ``Inferring an ELECTRE Tri Model from Assignment Examples'' and ``A User-Oriented Implementation of the ELECTRE-TRI Method Integrating Preference Elicitation Support'' 3.3.2 Searching for an Equivalence Between Decision Rules and Concordance-Discordance Preference Model in Multicriteria Choice Problems 3.3.3 Axiomatization of Utility, Outranking, and Decision Rule Preference Models for Multiple Criteria Classification Problems Under Partial Inconsistency with the Dominance Principle 3.3.4 Handling Effects of Reinforced Preference and Counter-Veto in Credibility of Outranking 3.3.5 ELECTREGKMS: Robust Ordinal Regression for Outranking Methods 3.3.6 Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE 3.3.7 Multiple Criteria Hierarchy Process for ELECTRE Tri Methods 3.3.8 A Robust Ranking Method Extending ELECTRE III to Hierarchy of Interacting Criteria, Imprecise Weights and Stochastic Analysis 3.3.9 ELECTRE-III-H: An Outranking-Based Decision Aiding Method for Hierarchically Structured Criteria 3.3.10 Other Contributions 3.4 Conclusions References 4 How Can Decision Sciences and MCDM Help Solve Challenging World Problems? 4.1 Introduction 4.2 Internet Searches 4.2.1 Recommender Systems 4.3 Big Data (and Artificial Intelligence) 4.4 The Platform Economy 4.5 Climate Change, Concern for Environment 4.6 Where the Opportunities Lie? 4.7 Final Word References 5 Preference Disaggregation Analysis: An Overview of Methodological Advances and Applications 5.1 Introduction 5.2 The General Framework of Preference Disaggregation Analysis 5.3 Models, Formulations, and Methodological Advances 5.3.1 Value Function Models 5.3.1.1 Modeling Forms 5.3.1.2 Ranking Problems 5.3.1.3 Sorting/Classification Problems 5.3.1.4 MUSA Method 5.3.2 Outranking Models 5.3.2.1 Brief Outline of Outranking Relations 5.3.2.2 Inference Procedures 5.3.3 Rule-Based Models 5.4 The Robustness Concern 5.4.1 The Issue of Robustness in PDA 5.4.2 Methodological Approaches 5.4.3 Experimental Studies 5.5 Overview of Applications and Decision Support Systems 5.6 Conclusions and Future Perspectives References 6 Modeling and Learning of Hierarchical Decision Models: The Case of the Choquet Integral 6.1 Introduction 6.2 Hierarchical Multi-Criteria Decision Models 6.2.1 Multi-Criteria Decision Models 6.2.2 Choquet Integral 6.2.3 Hierarchical Multi-Criteria Decision Models 6.3 Expressiveness of Hierarchical Models: The Case of Choquet Integrals 6.3.1 An Illustrative Example in an MCDA Setting 6.3.2 The Hierarchical Choquet Integral Model 6.4 Neur-HCI Framework to Learn a HMCDM 6.4.1 Marginal Utility Functions 6.4.2 Learning Tasks 6.4.3 Learning and Optimization 6.5 Summary and Conclusion References 7 Preference Learning Applied to Credit Rating: Applications and Perspectives 7.1 Introduction 7.2 Credit Rating or Sorting with Multiple Criteria 7.2.1 Country Risk 7.2.2 Corporate Credit Risk 7.3 Applications 7.3.1 Sorting Sovereign Bonds with Two Preference Learning Approaches 7.3.1.1 Alternatives and Reference Set Construction 7.3.1.2 Conditional Criteria and Data Reduction 7.3.1.3 Preference Learning Approach 7.3.2 Sorting Brazilian Debentures with the PDTOPSIS-Sort Method 7.3.2.1 Problem Definition 7.3.2.2 Learning the Expert's Preferences 7.4 Conclusion and Future Perspectives References 8 USort-nB and USort-nC: Two Multi-criteria Ordinal Classification Methods Using Interval Value Functions 8.1 Introduction 8.2 Some Background 8.3 An Ordinal Classification Method Based on Limiting Boundary Actions 8.3.1 Description of the Method 8.3.2 Consistency Properties of the USort-nB Primal and Dual Procedures 8.4 USort-nC: An Ordinal Classification Method Based on Representative Actions 8.4.1 Description of the Method 8.4.2 Consistency Properties of USort-nC 8.4.3 An Illustrative Example 8.5 Concluding Remarks References 9 Constructing an Outranking Relation from Semantic Criteria and Ordinal Criteria for the ELECTRE Method 9.1 Introduction 9.2 An Introduction to the Classic Methodology for Constructing an Outranking Relation in ELECTRE 9.3 Constructing an Outranking Relation from Semantic Criteria 9.4 Constructing an Outranking Relation from a Partial Pre-order on a Set of Alternatives 9.5 Constructing an Outranking Relation from an Assignment of Alternatives to Categories 9.6 The ELECTRE-H Software Package: Tools for Assisting the Decision Maker in the Determination of Thresholds 9.7 Examples of Applications 9.7.1 Environmental Analysis 9.7.2 Tourism 9.8 Summary and Conclusions References 10 Robust Ordinal Regression for Multiple Criteria Decision Aiding 10.1 Introduction 10.2 Review of Core Methods in Robust Ordinal Regression 10.2.1 Problem Typologies Considered in the ROR Methods 10.2.2 Preference Information Elicited in the ROR Methods 10.2.3 Preference Models Employed in the ROR Methods 10.2.4 Decision Outcomes Provided in the ROR Methods 10.3 Review of Other Developments Related to Robust Ordinal Regression 10.3.1 Robust Ordinal Regression methods 10.3.2 Decision Aiding Methods Related to ROR 10.3.3 Real-World Applications 10.4 Summary References 11 What Is Legitimate Decision Support? 11.1 Introduction 11.2 The Legitimacy of Decision Support: An Important But Neglected Topic 11.3 Visions of Legitimacy 11.4 The Legitimacy of Decision Support: A General Theory 11.5 Hurdles on the Road to Legitimacy 11.6 Conclusions References 12 MR-Sort with Partial Information to Decide Whether to Invest in Innovation Projects 12.1 Introduction 12.2 Multiple Criteria Sorting When Evaluations Are Missing 12.3 MR-Sort with Partial Information 12.3.1 A Short Reminder of MR-Sort 12.3.2 Our Proposal 12.3.3 The Bipolar Ordered Set of Classes 12.3.4 The Coalition Weights 12.3.5 The Conservative Mindset for Sorting 12.3.6 The Audacious Mindset for Sorting 12.4 Application to the Evaluation of Innovation Projects 12.5 Conclusion and Discussion References 13 Meta-Rankings of Journals Publishing Multiple Criteria Decision Aiding Research: Benefit-of-Doubt Composite Indicators for Heterogeneous Qualitative Scales 13.1 Introduction 13.2 Benefit-of-Doubt Perspectives for Heterogeneous Qualitative Scales 13.2.1 Notation and Common Elements 13.2.2 Model 1: BoD Minimize Regret 13.2.3 Model 2: BoD Minimize Regret without Trade-Offs 13.2.4 Model 3: BoD Maximum Value 13.3 Selection of MCDA-Related Journals and Rankings 13.4 Results for the Different Models and Variants 13.4.1 Model Comparison 13.4.2 Variant Comparison 13.4.3 Journal Comparison 13.5 Summary References 14 Interactive Multicriteria Methodology Based on a Synergy of PROMETHEE II and Robust Simos Methods: Application to the Evaluation of E-government in Europe 14.1 Introduction 14.2 The Synergy of PROMETHEE II and Robust Simos Multicriteria Evaluation Methods 14.2.1 A Brief Presentation of the PROMETHEE Methods 14.2.1.1 A Multicriteria Pairwise Outranking Indicator 14.2.1.2 Outranking Flows 14.2.1.3 PROMETHEE II Ranking Procedure 14.2.2 Elicitation of Criteria Weights Through the Simos Methods 14.2.2.1 The Original Method of Cards 14.2.2.2 The Robust Simos Method 14.3 Bipolar Robustness Control and Decision Support 14.3.1 Methodological Framework of Bipolar Robustness Control 14.3.2 Robustness Measures in the Disaggregation Pole 14.3.3 Robustness Measures in the Aggregation Pole and Decision Support 14.4 Implementation to the E-government Evaluation: Phase A'—First Elicitation of the Criteria Weights 14.4.1 E-government Evaluation Importance and Criteria Modelling 14.4.2 Initialization of the PROMETHEE II Method 14.4.3 A΄ Phase of the Robust Simos Method 14.5 Implementation to the E-government Evaluation: B and C Phases 14.5.1 B Phase of Robustness Control 14.5.2 C Phase of Robustness Control 14.6 Conclusion Appendices Appendix 1: Typology of PROMETHE's Generalized Criteria: Preference Function P(d),d: Evaluation Difference [2] Appendix 2: Performance of the European Countries on the Eight Evaluation Criteria References 15 The Use of Decision Maker's Preferences in Multiobjective Metaheuristics 15.1 Introduction 15.2 Two-Stage Approach for Interactive Analysis of Multiobjective Combinatorial Optimization Problems 15.3 Preference-Based Evaluation of Multiobjective Metaheuristics 15.4 Evolutionary Multiobjective Optimization Algorithms Based on Robust Ordinal Regression 15.5 Conclusion References 16 Decomposition and Coordination for Many-ObjectiveOptimization 16.1 Introduction 16.2 Foundations for Decomposition 16.3 State-of-the-Art in Multiobjective Decomposition and Coordination 16.3.1 Models and Solution Concepts 16.3.2 Coordination and Decision-Making 16.3.3 Applications 16.4 Developing a Decomposition–Coordination Technique 16.4.1 Types of Decomposition 16.4.2 Efficient Solutions of Subproblems Up to AiO 16.4.3 Efficient Solutions of AiO Down to Subproblems 16.4.4 Coordinating Subproblems 16.4.5 Computation of Efficient Solutions 16.4.6 Interactive Process 16.5 Example 16.6 Conclusions References 17 Fuzzy Linear Programming with General Necessity Measures 17.1 Introduction 17.2 Necessity Measures 17.3 Possibilistic Linear Programming 17.4 Case Where θi(·,hi)'s Are Convex and Concave 17.5 Similar Results for Necessity Measures Defined by Modifier-Generating Functions 17.6 Results Applied to Various Implication Functions 17.6.1 R-, Reciprocal R-, and S-Implication Functions 17.6.2 Results in R-Implication Functions 17.6.3 Results in Reciprocal R-Implication Functions 17.6.4 Results in S-Implication Functions 17.6.5 Obtained Results Applied to Famous Implication Functions 17.7 Concluding Remarks References 18 Dominance-Based Rough Set Approach: Basic Ideas and Main Trends 18.1 Introduction 18.2 Some Historical Notes on the Dominance-Based Rough Set Approach 18.3 Basic Concepts of the Dominance-Based Rough Set Approach 18.4 Developments of DRSA 18.4.1 DRSA to Multicriteria Choice and Ranking 18.4.2 Case-Based Reasoning Using Dominance-Based Decision Rules 18.4.3 Adaptations of DRSA to Handle Missing Attribute Values 18.4.4 Extensions of DRSA for Interval Evaluations on Criteria 18.4.5 Extending DRSA to Address Hierarchical Structure of Attributes 18.4.6 Extensions of DRSA for Non-ordinal Data 18.4.7 Parametric, Decision Theoretic, and Stochastic DRSA 18.4.8 Decision Rules Induction 18.5 Available Software 18.5.1 ruleLearn 18.5.2 RuLeStudio 18.5.3 RuleVisualization 18.5.4 jMAF 18.5.5 RuleRank Ultimate Desktop Edition 18.6 Conclusions Acknowledgements References 19 Rule Set Complexity for Mining Incomplete Data Using Probabilistic Approximations Based on Generalized Maximal Consistent Blocks 19.1 Introduction 19.2 Incomplete Data 19.3 Probabilistic Approximations 19.3.1 Global Probabilistic Approximations 19.3.2 Saturated Probabilistic Approximations 19.3.3 Rule Induction 19.4 Experiments 19.5 Conclusions References 20 Rule Confirmation Measures: Properties, Visual Analysis and Applications 20.1 Introduction 20.2 Bayesian Confirmation and Rule Confirmation Measures 20.2.1 Bayesian Confirmation 20.2.2 Rule Confirmation Measures 20.3 Properties of Confirmation Measures 20.3.1 Property of Monotonicity M 20.3.2 Symmetry Properties 20.3.3 Properties Inspired by Extreme Values of Confirmation 20.4 Visual Analysis of Measure Properties 20.4.1 Characteristic Regions of Confirmation Measures 20.4.2 Monotonicity-Related Properties: M 20.4.3 Symmetry-Related Properties: ES, HS, and EHS 20.4.4 Extrema-Related Properties: L, Ex1, and Maximality/Minimality 20.5 Current and Future Applications to Data Mining and Machine Learning 20.5.1 Multi-Criteria Selection of Non-dominated Rules 20.5.2 Post-processing of Rules Induced from Imbalanced Data 20.5.3 Classification by Association and Biomedical Data 20.5.4 Tetrahedron Visualizations for Classifier Evaluation Measures 20.5.5 Future Directions References 21 An Approach to Combining Adherence-to-Therapy and Patient Preference Models for Evaluation of Therapies in Patient-Centered Care 21.1 Introduction 21.2 Background 21.3 Atrial Fibrillation 21.4 Materials and Methods 21.4.1 Adherence Profile—Identifying Criteria 21.4.2 Adherence Profile—Selecting an Adherence Category 21.4.3 Adherence Model—Identifying Criteria 21.4.4 Adherence Model—Capturing Preferential Information Regarding Therapies 21.4.5 Patient Preference Models 21.5 Calculations 21.6 Results and Discussion 21.7 Conclusions References