دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Xanthoula-Eirini Pantazi, Dimitrios Moshou, Dionysis Bochtis سری: ISBN (شابک) : 0128143916, 9780128143919 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 319 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Intelligent Data Mining and Fusion Systems in Agriculture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داده کاوی هوشمند و سیستم های همجوشی در کشاورزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای داده کاوی و همجوشی هوشمند در کشاورزی روشهای هوش محاسباتی و همجوشی دادهها را ارائه میکند که در کشاورزی برای آزمایشهای غیر مخرب محصولات کشاورزی و نظارت بر وضعیت محصول کاربرد دارد. بخشها ترکیبی از حسگرها با معماریهای هوش مصنوعی در کشاورزی دقیق، از جمله الگوریتمها، نقشههای عصبی سلسله مراتبی با الهام از زیستی، و الگوریتمهای تشخیص تازگی که قادر به تشخیص تغییرات ناگهانی در شرایط مختلف هستند را پوشش میدهد. این کتاب به دانشجویان پیشرفته و متخصصان سطح ابتدایی در علوم و مهندسی کشاورزی، جغرافیا و علم اطلاعات جغرافیایی، مروری عمیق بر ارتباط بین تصمیمگیری در عملیات کشاورزی و ویژگیهای پشتیبانی تصمیم ارائه شده توسط الگوریتمهای هوش محاسباتی پیشرفته ارائه میدهد.
Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms.
Cover INTELLIGENT DATA MINING AND FUSION SYSTEMS IN AGRICULTURE Copyright 1 Sensors in agriculture Milestones in agricultural automation and monitoring in agriculture Introduction Sensing systems for PA Benefits through sensing for PA farming systems Current trends in agricultural automation Current challenges of PA sensing applications Sensors for soil analysis and characteristics Visible (VIS)/NIR spectroscopy Soil sensing using airborne and satellite imaging Electrodes Microwaves Yield sensing Sensors for weed management Sensors for disease detection and classification References Further reading 2 Artificial intelligence in agriculture Artificial intelligence and data mining basics Artificial neural networks (ANNs) Back propagation artificial neural network Single-layer feedforward neural network (SLFN) and extreme learning machine (ELM) Radial basis function neural network Deep learning Generalization accuracy of ANNs Validation by using partial datasets to alleviate bias Hold-out Cross-validation Neural networks applicability with big data Indicators of dataset suitability Penalty-driven regularization Convolutional autoencoder Bayesian networks Particle swarm optimization models Decision tree classifier RF classifier GMM models Principal component analysis (PCA) Maximum likelihood classifier (MLC) Artificial neural networks applications in Biosystems engineering Contribution of artificial intelligence in precision agriculture (economical, practical etc.) One class classifiers Support vector machines (SVMs) One class-support vector machines (SVMs) Support vector data description (SVDD) One-class support-vector-learning for multi class problems Nearest-center strategy-nearest-support-vector strategy Active learning Querying criteria Online active learning Sampling bias One class classification classifiers SVM based one-class classifier Auto-encoder based one-class classifier MOG based one-class classifier Augmentation of one class classifiers Hierarchical self-organizing artificial neural networks Taxonomy of unsupervised HSOM Thematic agglomerative HSOM Agglomerative HSOM based on clusters Static divisive SOM Dynamic divisive HSOM HSOM implementation and applications Counter-propagation artificial neural networks (CP-ANNs) Supervised Kohonen networks (SKNs) XY-fused networks (XY-F) Supervised self-organizing map with embedded output References Further reading 3 Utilization of multisensors and data fusion in precision agriculture The necessity of multisensors network utilization for agriculture monitoring and control Proximal sensing Proximal crop sensors Proximal sensors for crop biotic stresses Weed detection Plant disease detection in field conditions Disease detection using light reflection Smartphone apps for proximal sensing of biotic stresses Proximal sensors to measure crop abiotic stresses Basic principles of visible, near infrared and mid infrared spectroscopy X-ray fluorescence (XRF) spectroscopy Gamma ray spectroscopy Remote sensing Remote earth observation for crop diseases identification Weed detection Detection of insects Crop disease detection Remote sensing for crop abiotic stresses Remote sensing for prediction of yield productivity Yield and biomass prediction Vegetation height Leaf area index (LAI) parameter Spectral and thermal properties of plants in a nutshell Spectral analysis methods to estimate N and water status in crop Nitrogen crop status Canopy/leaf relative water content (CRWC/LRWC) Thermal image processing to predict water content in crops Decision support for fertilization and irrigation regimes based on augmentation on remote sensed data Data fusion background Taxonomy of fusion architectures Data fusion advantages Data fusion applications in precision agriculture Fusion of optical images and synthetic aperture radar (SAR) approaches Fusion of light detection and ranging (LiDAR) data and images Fusion of optical images and GIS data Data fusion of satellite, aerial and close-range images Optical and fluorescence imaging References Further reading 4 Tutorial I: Weed detection Introduction Materials and methods Defining hyperspectral versus multispectral imaging Advantages of hyperspectral imaging Disadvantages of hyperspectral imaging Hyperspectral imaging applications in agriculture Experimental setup Explanation of experiments Plant selection NDVI and spatial resolution Results and discussion for weed detection Results for hierarchical maps Results for active learning Discussion on SOM based models and active learning Discussion on SOM based models and active learning References 5 Tutorial II: Disease detection with fusion techniques Introduction Optical sensing and their contribution to crop disease identification Artificial intelligence approaches for crop disease monitoring Reference and advanced optical methods for plant disease detection Combination of optical sensing with data mining algorithms Experimental setup Optical instrumentation Fusion of optical sensing data Results and discussion Results and discussion for LSSVM and ARD Results and discussion for active learning References Further reading 6 Tutorial III: Disease and nutrient stress detection Introduction Yellow rust disease detection Machine learning in crop status recognition Materials and methods Active learning scheme Results and discussion for active learning Results and discussion for hierarchical self organizing classifiers References Further reading 7 Tutorial IV: Leaf disease recognition Introduction State of the art Materials and methods Application of LBP in disease recognition of infected plants Image segmentation Creation of LBP histogram One class classification One class support vector machines (OCSVMs) One-class support-vector-learning for multi class problems Nearest-support-vector strategy Generalization of the vines powdery mildew model to different crop diseases Validation of the developed disease classification framework The generalization potential of one class SVM from vines powdery mildew to other plant diseases Generalization of the vines black rot model to different crops diseases Segmentation technique Classification process and the features extraction process References 8 Tutorial V: Yield prediction Introduction Materials and methods Experimental setup Crop parameters affecting yield Soil parameters affecting yield Prediction of crop yield Results and discussion Accuracy of yield prediction with supervised models Yield maps References 9 Tutorial VI: Postharvest phenotyping Introduction Experimental setup Fluorescence parameters Data analysis FluorPen 100 fluorescence parameters Results and discussion References 10 General overview of the proposed data mining and fusion techniques in agriculture Practical benefits for agriculture field Economic benefits for agricultural production Social benefits for agricultural production Environmental impact derived from the proposed methods Standardization framework and traceability Food safety Chemical residues Microbial control Toxin safety Relation of mycotoxin transmission to crop management practices Weed control Employment Food quality, geo-traceability and authenticity Health Development of skill/education and training Other socio-economic impacts Prospects for further development of the proposed sensing techniques in the near future Impacts of the projected methods to the surroundings Foresights of the projected techniques integrated within the industry Preparing for the fourth industrial revolution References Further reading Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z Back Cover