ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Intelligent Data Engineering and Analytics: Proceedings of the 10th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA 2022)

دانلود کتاب مهندسی و تحلیل داده های هوشمند: مجموعه مقالات دهمین کنفرانس بین المللی مرزها در محاسبات هوشمند: نظریه و کاربردها (FICTA 2022)

Intelligent Data Engineering and Analytics: Proceedings of the 10th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA 2022)

مشخصات کتاب

Intelligent Data Engineering and Analytics: Proceedings of the 10th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA 2022)

ویرایش:  
نویسندگان: , , ,   
سری: Smart Innovation, Systems and Technologies, 327 
ISBN (شابک) : 981197523X, 9789811975233 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 626
[627] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Intelligent Data Engineering and Analytics: Proceedings of the 10th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA 2022) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی و تحلیل داده های هوشمند: مجموعه مقالات دهمین کنفرانس بین المللی مرزها در محاسبات هوشمند: نظریه و کاربردها (FICTA 2022) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی و تحلیل داده های هوشمند: مجموعه مقالات دهمین کنفرانس بین المللی مرزها در محاسبات هوشمند: نظریه و کاربردها (FICTA 2022)

این کتاب مجموعه مقالات دهمین کنفرانس بین‌المللی مرزهای محاسبات هوشمند: نظریه و کاربردها (FICTA 2022)، که در NIT Mizoram، Aizawl، Mizoram، هند در 18 تا 19 ژوئن 2022 برگزار شد، ارائه می‌کند. تبادل پژوهشگران، دانشمندان، مهندسان و متخصصان ایده ها و تجربیات جدید در حوزه نظریه های محاسبات هوشمند با کاربردهای آینده نگر در رشته های مختلف مهندسی در کتاب. این جلسات به دو جلد تقسیم شده است. این حوزه‌های گسترده‌ای از علوم اطلاعات و تصمیم‌گیری را پوشش می‌دهد، با مقالاتی که جنبه‌های نظری و عملی محاسبات فشرده داده، داده‌کاوی، محاسبات تکاملی، مدیریت دانش و شبکه‌ها، شبکه‌های حسگر، پردازش سیگنال، شبکه‌های بی‌سیم، پروتکل‌ها و معماری‌ها را بررسی می‌کنند. این جلد منبع ارزشمندی برای دانشجویان مقطع کارشناسی ارشد در رشته های مختلف مهندسی است.


توضیحاتی درمورد کتاب به خارجی

The book presents the proceedings of the 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2022), held at NIT Mizoram, Aizawl, Mizoram, India during 18 – 19 June 2022. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. These proceedings are divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. This volume is a valuable resource for postgraduate students in various engineering disciplines.



فهرست مطالب

Organisation
Preface
Contents
About the Editors
1 Implementing Holding Time Based  Data Forwarding in Underwater Opportunistic Routing Protocol  using Unetstack3
	1.1 Introduction
	1.2 Related Work
	1.3 Hold Time Computation
	1.4 Implementation of Hold Time and Packet Forwarding
		1.4.1 Hold Time
		1.4.2 Data Forwarding
		1.4.3 Overhearing
	1.5 Experimental Setup
	1.6 Results and Analysis
	1.7 Conclusion
	References
2 Weighted Low-Rank and Sparse Matrix Decomposition Models for Separating Background and Foreground in Dynamic MRI
	2.1 Introduction
	2.2 Related Work
	2.3 Implementation Process of Work
	2.4 Algorithms
		2.4.1 RPCA
		2.4.2 WNNM
		2.4.3 WSNM
	2.5 Experimental Results and Analysis
	2.6 Conclusion
	References
3 Remote Sensing Image Fusion Based on PCA and Wavelets
	3.1 Introduction
	3.2 Proposed Image Fusion Approach in Wavelet Domain
		3.2.1 Principal Component Analysis (PCA)
		3.2.2 Morphological Hat Transformation
		3.2.3 Wavelets
	3.3 Experimental Results
		3.3.1 Dataset
		3.3.2 Simulation Results
	3.4 Conclusion
	References
4 AgriBlockchain: Agriculture Supply Chain Using Blockchain
	4.1 Introduction
	4.2 Related Works
	4.3 Architecture of Proposed Model
		4.3.1 Farmer Contract
		4.3.2 Customer Contract
		4.3.3 Products Contract
		4.3.4 Order Contract
		4.3.5 Distributor Contract
		4.3.6 Payment Contract
	4.4 Security Analysis
		4.4.1 Entity Transactions
		4.4.2 Attacks Analysis
	4.5 Result and Discussions
		4.5.1 Experimental Set-up
		4.5.2 Performance Analysis
	4.6 Conclusion
	References
5 Hybrid Energy Systems Integrated Power System Imbalance Cost Calculation Using Moth Swam Algorithm
	5.1 Introduction
	5.2 Hybrid Energy Systems and Locational Marginal Price
	5.3 Problem Formulation
	5.4 Moth Swarm Algorithm
	5.5 Results and Discussion
	5.6 Conclusion
	References
6 MPA Optimized Model Predictive Controller for Optimal Control of an AVR System
	6.1 Introduction
		6.1.1 Background and Literature Survey
		6.1.2 Motivation and Contributions
	6.2 System Under Consideration
	6.3 MPA Based Model Predictive Controller
	6.4 Results and Discussion
		6.4.1 Basic Test Case
		6.4.2 Stability Analysis
		6.4.3 Robustness Analysis
	6.5 Conclusion
	Appendix
	References
7 Lightweight Privacy Preserving Framework at Edge Layer in IoT
	7.1 Introduction
	7.2 Related Work
	7.3 Design of Proposed System
	7.4 Methodology
	7.5 Conclusion
	References
8 Concept Drift Aware Analysis of Learning Engagement During COVID-19 Pandemic Using Adaptive Windowing
	8.1 Introduction
	8.2 Related Work
	8.3 Methodology
		8.3.1 Experiments with Real Data Set
	8.4 Results
	8.5 Conclusions and Future Directions
	References
9 Optimal Power Flow Considering Uncertainty of Renewable Energy Sources Using Meta-Heuristic Algorithm
	9.1 Introduction
	9.2 Problem Formulation
		9.2.1 Constraints
	9.3 CE_CMAES
	9.4 Test System and Results Discussion
		9.4.1 Statistical Analysis
	9.5 Conclusions
	References
10 A Triple Band High Gain Antenna Using Metamaterial
	10.1 Introduction
	10.2 Structural Evolution
	10.3 Simulated Results and Discussion
	10.4 Conclusions
	References
11 Physical Layer Security in MIMO Relay-Based Cognitive Radio Network
	11.1 Introduction
	11.2 System Model
		11.2.1 Direct Transmission (DT)
		11.2.2 Amplify and Forward (AF) Relaying
		11.2.3 Channel Representation
	11.3 Relay Selection Scheme and Problem Formulation
	11.4 Simulation Results
	11.5 Conclusion
	References
12 A Novel Approach for Bug Triaging Using TOPSIS
	12.1 Introduction
	12.2 Motivation
	12.3 Related Work
	12.4 Methodology
	12.5 Experiment and Results
	12.6 Threats to Validity
	12.7 Conclusion and Future Scope
	References
13 Energy-Efficient Resource Allocation  in Cognitive Radio Networks
	13.1 Introduction
	13.2 System Model
	13.3 Resource Allocation
		13.3.1 Sub-carrier Allocation
		13.3.2 Power Allocation
	13.4 Results and Discussions
	13.5 Conclusions
	References
14 Medical Internet of Things and Data Analytics for Post-COVID Care: An Analysis
	14.1 Introduction
	14.2 Literature Survey
		14.2.1 Internet of Things
		14.2.2 Data Analytics for Remote Patient Monitoring
	14.3 Proposed Framework
	14.4 Post-COVID Data Analysis
	14.5 Discussion
	14.6 Conclusions
	References
15 Mammography Image Classification  and Detection by Bi-LSTM with Residual Network Using XG-Boost Approach
	15.1 Introduction
		15.1.1 Classification and Detection of Breast Masses
		15.1.2 Pre-processing of Mammogram
		15.1.3 Digital Mammogram Segmentation
		15.1.4 Mammogram-Based Feature Extraction
		15.1.5 Classification of Mammogram
	15.2 Related Works
	15.3 The Proposed Method
		15.3.1 Proposed Methodology: Flowchart
	15.4 Results and Discussion
	15.5 Conclusion
	References
16 ECG Biometric Recognition  by Convolutional Neural Networks  with Transfer Learning Using Random Forest Approach
	16.1 Introduction
		16.1.1 ECG Based Biometric Systems
		16.1.2 Biometric Identification System Based on Deep-ECG
	16.2 Related Works
	16.3 The Proposed Method
		16.3.1 Proposed Methodology: Flowchart
		16.3.2 Transfer Learning Algorithm
	16.4 Results and Discussion
	16.5 Conclusion
	References
17 Design and Analysis of a Metamaterial-Based Butterworth Microstrip Filter
	17.1 Introduction
	17.2 Design and Analysis
		17.2.1 Geometrical Pattern
		17.2.2 Design Procedure: Conventional Low Pass Filter
		17.2.3 Simulations and Analysis
	17.3 Fabrication and Measurement
	17.4 Conclusion
	References
18 Internet of Things-Enabled Irrigation System in Precision Agriculture
	18.1 Introduction
	18.2 Literature Survey
	18.3 Case Study: IoT-Enabled Irrigation System in Precision Agriculture
	18.4 Other Applications of Precision Agriculture
		18.4.1 Soil Sampling and Mapping
		18.4.2 Fertilizer
		18.4.3 Crop Disease and Pest Management
		18.4.4 Yield Monitoring, Forecasting, and Harvesting
	18.5 Challenges and Existing Solutions
		18.5.1 Weak Internet Connectivity in Agriculture Fields
		18.5.2 High Hardware Costs
		18.5.3 Disrupted Connectivity to Cloud
		18.5.4 Lack of Infrastructure
		18.5.5 Lack of Security
	18.6 Conclusions and Future Work
	References
19 A Hybrid Feature Selection Framework for Breast Cancer Prediction Using Mutual Information and AdaBoost-RFE
	19.1 Introduction
	19.2 Literature Survey
	19.3 Methods
		19.3.1 Mutual Information
		19.3.2 Recursive Feature Elimination
		19.3.3 Proposed Hybrid MI-AdaBoost(w)-RFE Feature Selection Method
		19.3.4 Data Description and Preprocessing
	19.4 Experimental Results and Discussion
		19.4.1 Evaluation Matrix
		19.4.2 Model Verification
		19.4.3 Shortcomings
	19.5 Conclusion and Future Work
	References
20 2D-CTM and DNA-Based Computing  for Medical Image Encryption
	20.1 Introduction
	20.2 Literature Survey
	20.3 Methodology
		20.3.1 Key Generation
		20.3.2 Encryption
		20.3.3 Decryption
	20.4 Performance Analysis
		20.4.1 Experimental Setup and Dataset Details
		20.4.2 Results and Discussion
	20.5 Conclusion
	References
21 A Review of Financial Fraud Detection in E-Commerce Using Machine Learning
	21.1 Introduction
	21.2 Fraud Detection Techniques
		21.2.1 Rule-Based Fraud Detection
		21.2.2 Machine Learning for Fraud Detection
	21.3 Literature Survey
		21.3.1 Supervised Fraud Detection
		21.3.2 Unsupervised Fraud Detection
		21.3.3 Semi-supervised Fraud Detection
	21.4 Community-Based Fraud Detection on E-Commerce
	21.5 Evaluation Measures
	21.6 Challenges in Fraud Detection
	21.7 Conclusion
	References
22 ReEDNet-An Encoder–Decoder Framework for Single Image Dehazing
	22.1 Introduction
	22.2 The Proposed Network
		22.2.1 The Proposed ReEDNet
	22.3 Analysis of Network
	22.4 Experiments and Results and Analysis
		22.4.1 Implementation Details
		22.4.2 Dataset
		22.4.3 Evaluation Metric
		22.4.4 Quantitative Analysis
		22.4.5 Qualitative Analysis
	22.5 Conclusion
	References
23 Detection of Flood Events from Satellite Images Using Deep Learning
	23.1 Introduction
	23.2 Related Work
	23.3 Methodology
		23.3.1 Image Acquisition
		23.3.2 Preprocessing of the Images
		23.3.3 Creating Semantic Segmentation Model
		23.3.4 Training Model
		23.3.5 Testing Model
	23.4 Results and Analysis
	23.5 Conclusion
	References
24 Development and Implementation of an Efficient Deep Residual Network for ECG Classification
	24.1 Introduction
	24.2 Methodology
		24.2.1 Neural Network Training and Architecture
		24.2.2 Quantized Neural Networks
		24.2.3 Deployment
	24.3 Dataset Description and Analysis
	24.4 Numerical Experiments
	24.5 Conclusion and Future Scope
	References
25 Study of Class Incremental Learning Strategies for Intrusion Detection System
	25.1 Introduction
	25.2 Literature Review
	25.3 Experimental Methodology
		25.3.1 Data Preprocessing
		25.3.2 Continual Learning Strategies
	25.4 Result and Analysis
		25.4.1 Results
	25.5 Conclusion
	References
26 Classification of High-Priority Tweets for Effective Rescue Operations During Natural Disaster Combining Twitter’s Textual and Non-textual Features
	26.1 Introduction
	26.2 Related Works
	26.3 Methodology
		26.3.1 Preprocessing
		26.3.2 Annotation
		26.3.3 GloVe Vectors—Random Forest Classifier Model
		26.3.4 Combined Features Random Forest Model (CFRF)
	26.4 Results and Discussion
		26.4.1 Experiment
		26.4.2 Dataset
		26.4.3 Results
	26.5 Conclusion
	References
27 An Energy Efficient Offloading Technique for UAV-Assisted MEC Using Nature Inspired Algorithm
	27.1 Introduction
	27.2 Models and Notations
		27.2.1 Notations
		27.2.2 System Models
		27.2.3 Energy Usage Model
	27.3 Problem Formulation
	27.4 Proposed PSO-Based EEFOUM Algorithm
		27.4.1 Initialization of Particle
		27.4.2 Fitness
		27.4.3 Velocity and Position
	27.5 Implementation Results
	27.6 Conclusion
	References
28 Trajectory Planning and Data Collection of UAVs Over Disaster a Affected Areas
	28.1 Introduction
	28.2 Literature Survey
	28.3 System Model
	28.4 Problem Formulation
	28.5 Proposed Work
		28.5.1 Initialization and Chromosome
		28.5.2 Fitness
		28.5.3 Mutation and Crossover
	28.6 Simulation Results
	28.7 Conclusion
	References
29 Hand Gesture Recognition on Skeletal Data Using Multi-head Neural Network
	29.1 Introduction
	29.2 Literature Review
	29.3 Proposed Architecture and Working
	29.4 Dataset
	29.5 Experimental Setup
	29.6 Results
	29.7 Conclusion
	References
30 Ship Detection from Satellite Images with Advanced Deep Learning Model (Single Shot Detector (SSD))
	30.1 Introduction
	30.2 Related Work
	30.3 System Model
		30.3.1 Workflow of Ship Detection
		30.3.2 TensorFlow
		30.3.3 Convolution Neural Networks (CNNs)
		30.3.4 Single Shot Detector
	30.4 Results and Analysis
	30.5 Conclusion and Future Work
	References
31 Abstractive Text Summarization for English Language Using NLP and Machine Learning Approaches
	31.1 Introduction
	31.2 Dataset Description
	31.3 Literature Review
	31.4 Methodology
		31.4.1 Pre-processing Data
		31.4.2 BiLSTM-Based Approach/1st Approach
		31.4.3 RoBERTa-Based Approach/2nd Approach
		31.4.4 DistilRoBERTa-Based Approach/3rd Approach
	31.5 Results and Discussion
		31.5.1 BiLSTM-Based Approach
		31.5.2 RoBERTa-Based Approach
		31.5.3 DistilRoBERTa-Based Approach
	31.6 Conclusion and Future Scope
	References
32 Comparative Modeling of CPU Execution Times of AES and ECC-AES Hybrid Algorithms Over Mobile Cloud Environment
	32.1 Introduction
	32.2 Related Work
	32.3 Description of Our Model
		32.3.1 Scheme 1
		32.3.2 Scheme 2
	32.4 Experimental Analysis of Data
		32.4.1 Scheme 1
		32.4.2 Scheme 2
	32.5 Comparison of Models
		32.5.1 Comparison Between Scheme 1 and 2 Based on Hybrid Algorithm.
		32.5.2 Comparison Between Scheme 1 and 2 Based on AES Algorithm
		32.5.3 Comparison Based on Scheme 1 Between Hybrid and AES Algorithms
	32.6 Conclusions
	References
33 A Multi-view Representation Learning Approach for Seizure Detection Over Multi-channel EEG Signals
	33.1 Introduction
	33.2 Related Work
	33.3 Description of Dataset
	33.4 Proposed Approach
		33.4.1 Considered Experimental Data of CHB-MIT
		33.4.2 Preprocessing of EEG Data
		33.4.3 EEG Data Segmentation
		33.4.4 Deep Learning Model
		33.4.5 Model Evaluation
	33.5 Experimental Setup
	33.6 Performance Evaluation Criteria
		33.6.1 Accuracy
		33.6.2 Recall (Sensitivity)
		33.6.3 Specificity
		33.6.4 F1-Score
	33.7 Results and Analysis
	33.8 Conclusion and Future Scope
	References
34 Machine Learning Approach to Analyze Breast Cancer
	34.1 Introduction
	34.2 Background
	34.3 Model Design and Methodology
		34.3.1 Dataset Description
		34.3.2 Diagnosis Model
	34.4 Implementation Aspects
		34.4.1 Results
		34.4.2 Discussion
	34.5 Conclusion
	References
35 A Hybrid Adaptive Image Retrieval Approach by Using Clustering and Neural Network Techniques
	35.1 Introduction
	35.2 Prerequisite
		35.2.1 CBIR Architecture
		35.2.2 Image Similarity
		35.2.3 Relevance Feedback
		35.2.4 Texture Representations
		35.2.5 Back Propagation-Based Neural Network (BPNN)
	35.3 A Hybrid Adaptive Approach for Content-Based Image Retrieval Method
	35.4 Results
	35.5 Conclusion and Future Scope
	References
36 2D Convolutional LSTM-Based Approach for Human Action Recognition on Various Sensor Data
	36.1 Introduction
	36.2 Literature Survey
	36.3 Methodology
		36.3.1 Architecture Overview
		36.3.2 Pre-processing
		36.3.3 Exploratory Data Analysis (EDA)
		36.3.4 Segmentation
		36.3.5 Feature Extraction and Classification
	36.4 Results and Discussions
		36.4.1 Dataset
		36.4.2 Evaluation Metrics
		36.4.3 Comparative Experimental Results
	36.5 Conclusion
	References
37 FCPSO: Evaluation of Feature Clustering Using Particle Swarm Optimization for Health Data
	37.1 Introduction
	37.2 Related Works
	37.3 An Overview of Particle Swarm Optimization
	37.4 System Model and Problem Formulation
	37.5 Proposed Framework
		37.5.1 Preprocessing
		37.5.2 Initialization of Population and Generation of Cluster
		37.5.3 Fitness Computation
		37.5.4 Update Position and Velocity
	37.6 Data Observation and Simulation Results
		37.6.1 Overview of Datasets
		37.6.2 Simulation Setup
		37.6.3 Simulation Results
	37.7 Conclusion
	References
38 Geometric Representation of Obstacles Depth in a Partially Unknown Environment for Achieving Optimized Navigation by Mobile Robots
	38.1 Introduction
	38.2 Related Work
	38.3 Methodology
		38.3.1 Cubot as Customized Platform
		38.3.2 Fused Sensor Data as Input
		38.3.3 Graphical Approach of Path Planning
	38.4 Experimental Analysis
		38.4.1 Sensor Calibration
		38.4.2 Sensor Fusion for on Path Obstacle Detection
		38.4.3 Graph Theoretic Path Planning Using Fused Sensor Data
		38.4.4 Data Derivation
	38.5 Conclusion
	References
39 Applied Picture Fuzzy Sets to Smart Autonomous Driving Vehicle for Multiple Decision Making in Forest Transportation
	39.1 Introduction
	39.2 Terms of Picture Fuzzy Sets
	39.3 The Proposed Method
		39.3.1 Distance from the Vehicle to the Location of the Signal Lights or the Nearest Obstacle
		39.3.2 The Angle Created by the Current Direction of the Vehicle with the vehicle’s Next Direction
	39.4 Case Study in the Proposed Method
		39.4.1 The Status of the Signal Lights in Direction of the Vehicle
	39.5 Conclusions
	References
40 Handwritten Mathematical Character Recognition Using Machine Learning and Deep Learning
	40.1 Introduction
	40.2 Literature Survey
	40.3 Proposed Work
		40.3.1 Data Set
		40.3.2 Classification Algorithms and Implementation
	40.4 Results and Discussion
	40.5 Conclusion and Future Scope
	References
41 A Comparative Analysis of Sentiment Analysis and Emotion Detection Problems on Texts
	41.1 Introduction
	41.2 Related Works
	41.3 Methodology
	41.4 Experiments
		41.4.1 Dataset Annotation Experiments
		41.4.2 Machine Learning Experiments
	41.5 Result and Analysis
		41.5.1 Relation Between Sentiment and Emotion
		41.5.2 Machine Learning Experiment Analysis
	41.6 Conclusion and Future Work
	References
42 Transfer Learning-Based Advanced  Deep Learning Architecture  for the Identification of HIV-1 Integration Sites Using Imbalanced Dataset
	42.1 Introduction
	42.2 Literature Background
		42.2.1 HIV Integration Site Detection
		42.2.2 VGG19
	42.3 System and Methods
		42.3.1 Experimental Setup and Dataset Specifications
		42.3.2 Transfer Learning
		42.3.3 Encoding
		42.3.4 Convolution Neural Network
		42.3.5 Proposed Model for Predicting the HIV IS
	42.4 Results and Discussion
		42.4.1 Results
		42.4.2 Analysis of the Results
	42.5 Conclusion and Future Scope
	References
43 Optimal Evacuation Planning Using Integer Programming
	43.1 Introduction
	43.2 Model Framework
	43.3 Problem Formulation
	43.4 Drawbacks/Challenges
	43.5 Conclusion
	References
44 Automatic Speech Recognition Analysis Over Wireless Networks
	44.1 Introduction
	44.2 Background
		44.2.1 Voice Over IP System
		44.2.2 VoIP Codecs
		44.2.3 Automatic Speech Recognition
	44.3 Methodology
	44.4 Experiment Results
	44.5 Conclusions
	References
45 Entropy-Based Clustering for Subspace Pattern Discovery in Ordinal Survey Data
	45.1 Introduction
		45.1.1 Types of Survey Data
		45.1.2 Challenges in Survey
		45.1.3 Entropy and Clustering
	45.2 Background and Related Work
	45.3 The Proposed Methodology
	45.4 Experimental Results and Discussion
		45.4.1 Dataset
		45.4.2 Results
		45.4.3 Discussion
	45.5 Conclusion
	References
46 AlexNet Model for Sign Language Recognition
	46.1 Introduction
	46.2 Proposed Design Methodology
		46.2.1 CNN
		46.2.2 AlexNet Architecture for SLR
	46.3 Experimental Result
		46.3.1 Dataset
		46.3.2 Simulation Results and Analysis of Segmentation Approach
		46.3.3 Performance Evaluation
	46.4 Conclusion
	References
47 An Improved Query Similarity Model for Online Health Community Forum Using Cross-Attention Mechanism on Siamese Network
	47.1 Introduction
	47.2 Related Work
	47.3 Methodology
		47.3.1 Dataset
		47.3.2 Query Similarity Model Using Siamese Network with Cross-Attention Mechanism
	47.4 Experiment and Results
	47.5 Conclusion and Future Direction
	References
48 COVID Detection Using Chest X-ray Images Using Ensembled Deep Learning
	48.1 Introduction
	48.2 Related Work
	48.3 Research Approach
		48.3.1 Data Collection Phase
		48.3.2 Data Preprocessing Phase
		48.3.3 Model Used Phase
		48.3.4 Ensemble Model for Features Extraction Phase
		48.3.5 Implementation and Training Phase
	48.4 Result and Analysis
		48.4.1 Performance Evaluation of Model
	48.5 Conclusion and Future Scope
	References
49 Robot Motion Path Planning Using Artificial Bee Colony Algorithm
	49.1 Introduction
	49.2 Artificial Bee Colony Algorithm
		49.2.1 Initialization Phase
		49.2.2 Employed Phase
		49.2.3 Onlooker Phase
		49.2.4 Scout Phase
	49.3 Navigation Architecture
	49.4 ABC Algorithm Robot Motion Path Planning
		49.4.1 Initialization Phase
		49.4.2 Scout Phase
		49.4.3 Employed Phase
		49.4.4 Onlooker Phase
	49.5 Simulation Observation and Results
		49.5.1 Unbranched Path or Linear Path
		49.5.2 Branched Path or Nonlinear Path
	49.6 Conclusion
	References
50 Predicting the Tomato Plant Disease Using Deep Learning Techniques
	50.1 Introduction
	50.2 Literature Work
	50.3 Research Methodology
	50.4 Results
	50.5 Conclusion
	References
51 Tracking of Lost Objects Using GPS and GSM
	51.1 Introduction
	51.2 The Overall System
		51.2.1 Architecture
		51.2.2 Components
		51.2.3 Prototype
	51.3 Algorithm
	51.4 Results
	51.5 Conclusion
	References
52 Decentralization of Car Insurance System Using Machine Learning and Distributed Ledger Technology
	52.1 Introduction
	52.2 Literature Survey
	52.3 Proposed Methodology
		52.3.1 Overall CIAS Architecture Design
		52.3.2 Machine Learning Model to Detect Damages
		52.3.3 Implementation of Blockchain Technology
	52.4 Future Work
	52.5 Conclusion
	References
53 Heart Disease Detection from Gene Expression Data Using Optimization Driven Deep Q-Network
	53.1 Introduction
	53.2 Literature Survey
		53.2.1 Challenges
	53.3 Proposed Methodology
	53.4 Heart Disease Detection Using Deep Q-Network
		53.4.1 Training Procedure of Proposed PDHO Algorithm
	53.5 Results and Discussion
	53.6 Conclusion
	References
54 Learning-Based Scheme for Efficient Content Caching in Vehicular Networks
	54.1 Introduction
	54.2 Related Work
	54.3 System Model
		54.3.1 Caching of Content
		54.3.2 Delivery of Content
		54.3.3 Problem Formulation
	54.4 Learning Automata-Based Content Caching
		54.4.1 Proposed Algorithm
	54.5 Performance Evaluation
		54.5.1 Simulation Environment Set-up
		54.5.2 Overall Performance
	54.6 Conclusion
	References
55 Adaptive Resource Allocation in WiMAX Networks for Improved Quality of Service (QoS)
	55.1 Introduction
		55.1.1 Related Work
	55.2 2-Level Scheduling Algorithm
		55.2.1 Level-1 Scheduling
		55.2.2 Level-2 Scheduling
	55.3 Simulation Results
	55.4 Conclusions
	References
Author Index




نظرات کاربران