دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vikrant Bhateja, Xin-She Yang, Jerry Chun-Wei Lin, Ranjita Das سری: Smart Innovation, Systems and Technologies, 327 ISBN (شابک) : 981197523X, 9789811975233 ناشر: Springer سال نشر: 2023 تعداد صفحات: 626 [627] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Intelligent Data Engineering and Analytics: Proceedings of the 10th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA 2022) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی و تحلیل داده های هوشمند: مجموعه مقالات دهمین کنفرانس بین المللی مرزها در محاسبات هوشمند: نظریه و کاربردها (FICTA 2022) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات دهمین کنفرانس بینالمللی مرزهای محاسبات هوشمند: نظریه و کاربردها (FICTA 2022)، که در NIT Mizoram، Aizawl، Mizoram، هند در 18 تا 19 ژوئن 2022 برگزار شد، ارائه میکند. تبادل پژوهشگران، دانشمندان، مهندسان و متخصصان ایده ها و تجربیات جدید در حوزه نظریه های محاسبات هوشمند با کاربردهای آینده نگر در رشته های مختلف مهندسی در کتاب. این جلسات به دو جلد تقسیم شده است. این حوزههای گستردهای از علوم اطلاعات و تصمیمگیری را پوشش میدهد، با مقالاتی که جنبههای نظری و عملی محاسبات فشرده داده، دادهکاوی، محاسبات تکاملی، مدیریت دانش و شبکهها، شبکههای حسگر، پردازش سیگنال، شبکههای بیسیم، پروتکلها و معماریها را بررسی میکنند. این جلد منبع ارزشمندی برای دانشجویان مقطع کارشناسی ارشد در رشته های مختلف مهندسی است.
The book presents the proceedings of the 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2022), held at NIT Mizoram, Aizawl, Mizoram, India during 18 – 19 June 2022. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. These proceedings are divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. This volume is a valuable resource for postgraduate students in various engineering disciplines.
Organisation Preface Contents About the Editors 1 Implementing Holding Time Based Data Forwarding in Underwater Opportunistic Routing Protocol using Unetstack3 1.1 Introduction 1.2 Related Work 1.3 Hold Time Computation 1.4 Implementation of Hold Time and Packet Forwarding 1.4.1 Hold Time 1.4.2 Data Forwarding 1.4.3 Overhearing 1.5 Experimental Setup 1.6 Results and Analysis 1.7 Conclusion References 2 Weighted Low-Rank and Sparse Matrix Decomposition Models for Separating Background and Foreground in Dynamic MRI 2.1 Introduction 2.2 Related Work 2.3 Implementation Process of Work 2.4 Algorithms 2.4.1 RPCA 2.4.2 WNNM 2.4.3 WSNM 2.5 Experimental Results and Analysis 2.6 Conclusion References 3 Remote Sensing Image Fusion Based on PCA and Wavelets 3.1 Introduction 3.2 Proposed Image Fusion Approach in Wavelet Domain 3.2.1 Principal Component Analysis (PCA) 3.2.2 Morphological Hat Transformation 3.2.3 Wavelets 3.3 Experimental Results 3.3.1 Dataset 3.3.2 Simulation Results 3.4 Conclusion References 4 AgriBlockchain: Agriculture Supply Chain Using Blockchain 4.1 Introduction 4.2 Related Works 4.3 Architecture of Proposed Model 4.3.1 Farmer Contract 4.3.2 Customer Contract 4.3.3 Products Contract 4.3.4 Order Contract 4.3.5 Distributor Contract 4.3.6 Payment Contract 4.4 Security Analysis 4.4.1 Entity Transactions 4.4.2 Attacks Analysis 4.5 Result and Discussions 4.5.1 Experimental Set-up 4.5.2 Performance Analysis 4.6 Conclusion References 5 Hybrid Energy Systems Integrated Power System Imbalance Cost Calculation Using Moth Swam Algorithm 5.1 Introduction 5.2 Hybrid Energy Systems and Locational Marginal Price 5.3 Problem Formulation 5.4 Moth Swarm Algorithm 5.5 Results and Discussion 5.6 Conclusion References 6 MPA Optimized Model Predictive Controller for Optimal Control of an AVR System 6.1 Introduction 6.1.1 Background and Literature Survey 6.1.2 Motivation and Contributions 6.2 System Under Consideration 6.3 MPA Based Model Predictive Controller 6.4 Results and Discussion 6.4.1 Basic Test Case 6.4.2 Stability Analysis 6.4.3 Robustness Analysis 6.5 Conclusion Appendix References 7 Lightweight Privacy Preserving Framework at Edge Layer in IoT 7.1 Introduction 7.2 Related Work 7.3 Design of Proposed System 7.4 Methodology 7.5 Conclusion References 8 Concept Drift Aware Analysis of Learning Engagement During COVID-19 Pandemic Using Adaptive Windowing 8.1 Introduction 8.2 Related Work 8.3 Methodology 8.3.1 Experiments with Real Data Set 8.4 Results 8.5 Conclusions and Future Directions References 9 Optimal Power Flow Considering Uncertainty of Renewable Energy Sources Using Meta-Heuristic Algorithm 9.1 Introduction 9.2 Problem Formulation 9.2.1 Constraints 9.3 CE_CMAES 9.4 Test System and Results Discussion 9.4.1 Statistical Analysis 9.5 Conclusions References 10 A Triple Band High Gain Antenna Using Metamaterial 10.1 Introduction 10.2 Structural Evolution 10.3 Simulated Results and Discussion 10.4 Conclusions References 11 Physical Layer Security in MIMO Relay-Based Cognitive Radio Network 11.1 Introduction 11.2 System Model 11.2.1 Direct Transmission (DT) 11.2.2 Amplify and Forward (AF) Relaying 11.2.3 Channel Representation 11.3 Relay Selection Scheme and Problem Formulation 11.4 Simulation Results 11.5 Conclusion References 12 A Novel Approach for Bug Triaging Using TOPSIS 12.1 Introduction 12.2 Motivation 12.3 Related Work 12.4 Methodology 12.5 Experiment and Results 12.6 Threats to Validity 12.7 Conclusion and Future Scope References 13 Energy-Efficient Resource Allocation in Cognitive Radio Networks 13.1 Introduction 13.2 System Model 13.3 Resource Allocation 13.3.1 Sub-carrier Allocation 13.3.2 Power Allocation 13.4 Results and Discussions 13.5 Conclusions References 14 Medical Internet of Things and Data Analytics for Post-COVID Care: An Analysis 14.1 Introduction 14.2 Literature Survey 14.2.1 Internet of Things 14.2.2 Data Analytics for Remote Patient Monitoring 14.3 Proposed Framework 14.4 Post-COVID Data Analysis 14.5 Discussion 14.6 Conclusions References 15 Mammography Image Classification and Detection by Bi-LSTM with Residual Network Using XG-Boost Approach 15.1 Introduction 15.1.1 Classification and Detection of Breast Masses 15.1.2 Pre-processing of Mammogram 15.1.3 Digital Mammogram Segmentation 15.1.4 Mammogram-Based Feature Extraction 15.1.5 Classification of Mammogram 15.2 Related Works 15.3 The Proposed Method 15.3.1 Proposed Methodology: Flowchart 15.4 Results and Discussion 15.5 Conclusion References 16 ECG Biometric Recognition by Convolutional Neural Networks with Transfer Learning Using Random Forest Approach 16.1 Introduction 16.1.1 ECG Based Biometric Systems 16.1.2 Biometric Identification System Based on Deep-ECG 16.2 Related Works 16.3 The Proposed Method 16.3.1 Proposed Methodology: Flowchart 16.3.2 Transfer Learning Algorithm 16.4 Results and Discussion 16.5 Conclusion References 17 Design and Analysis of a Metamaterial-Based Butterworth Microstrip Filter 17.1 Introduction 17.2 Design and Analysis 17.2.1 Geometrical Pattern 17.2.2 Design Procedure: Conventional Low Pass Filter 17.2.3 Simulations and Analysis 17.3 Fabrication and Measurement 17.4 Conclusion References 18 Internet of Things-Enabled Irrigation System in Precision Agriculture 18.1 Introduction 18.2 Literature Survey 18.3 Case Study: IoT-Enabled Irrigation System in Precision Agriculture 18.4 Other Applications of Precision Agriculture 18.4.1 Soil Sampling and Mapping 18.4.2 Fertilizer 18.4.3 Crop Disease and Pest Management 18.4.4 Yield Monitoring, Forecasting, and Harvesting 18.5 Challenges and Existing Solutions 18.5.1 Weak Internet Connectivity in Agriculture Fields 18.5.2 High Hardware Costs 18.5.3 Disrupted Connectivity to Cloud 18.5.4 Lack of Infrastructure 18.5.5 Lack of Security 18.6 Conclusions and Future Work References 19 A Hybrid Feature Selection Framework for Breast Cancer Prediction Using Mutual Information and AdaBoost-RFE 19.1 Introduction 19.2 Literature Survey 19.3 Methods 19.3.1 Mutual Information 19.3.2 Recursive Feature Elimination 19.3.3 Proposed Hybrid MI-AdaBoost(w)-RFE Feature Selection Method 19.3.4 Data Description and Preprocessing 19.4 Experimental Results and Discussion 19.4.1 Evaluation Matrix 19.4.2 Model Verification 19.4.3 Shortcomings 19.5 Conclusion and Future Work References 20 2D-CTM and DNA-Based Computing for Medical Image Encryption 20.1 Introduction 20.2 Literature Survey 20.3 Methodology 20.3.1 Key Generation 20.3.2 Encryption 20.3.3 Decryption 20.4 Performance Analysis 20.4.1 Experimental Setup and Dataset Details 20.4.2 Results and Discussion 20.5 Conclusion References 21 A Review of Financial Fraud Detection in E-Commerce Using Machine Learning 21.1 Introduction 21.2 Fraud Detection Techniques 21.2.1 Rule-Based Fraud Detection 21.2.2 Machine Learning for Fraud Detection 21.3 Literature Survey 21.3.1 Supervised Fraud Detection 21.3.2 Unsupervised Fraud Detection 21.3.3 Semi-supervised Fraud Detection 21.4 Community-Based Fraud Detection on E-Commerce 21.5 Evaluation Measures 21.6 Challenges in Fraud Detection 21.7 Conclusion References 22 ReEDNet-An Encoder–Decoder Framework for Single Image Dehazing 22.1 Introduction 22.2 The Proposed Network 22.2.1 The Proposed ReEDNet 22.3 Analysis of Network 22.4 Experiments and Results and Analysis 22.4.1 Implementation Details 22.4.2 Dataset 22.4.3 Evaluation Metric 22.4.4 Quantitative Analysis 22.4.5 Qualitative Analysis 22.5 Conclusion References 23 Detection of Flood Events from Satellite Images Using Deep Learning 23.1 Introduction 23.2 Related Work 23.3 Methodology 23.3.1 Image Acquisition 23.3.2 Preprocessing of the Images 23.3.3 Creating Semantic Segmentation Model 23.3.4 Training Model 23.3.5 Testing Model 23.4 Results and Analysis 23.5 Conclusion References 24 Development and Implementation of an Efficient Deep Residual Network for ECG Classification 24.1 Introduction 24.2 Methodology 24.2.1 Neural Network Training and Architecture 24.2.2 Quantized Neural Networks 24.2.3 Deployment 24.3 Dataset Description and Analysis 24.4 Numerical Experiments 24.5 Conclusion and Future Scope References 25 Study of Class Incremental Learning Strategies for Intrusion Detection System 25.1 Introduction 25.2 Literature Review 25.3 Experimental Methodology 25.3.1 Data Preprocessing 25.3.2 Continual Learning Strategies 25.4 Result and Analysis 25.4.1 Results 25.5 Conclusion References 26 Classification of High-Priority Tweets for Effective Rescue Operations During Natural Disaster Combining Twitter’s Textual and Non-textual Features 26.1 Introduction 26.2 Related Works 26.3 Methodology 26.3.1 Preprocessing 26.3.2 Annotation 26.3.3 GloVe Vectors—Random Forest Classifier Model 26.3.4 Combined Features Random Forest Model (CFRF) 26.4 Results and Discussion 26.4.1 Experiment 26.4.2 Dataset 26.4.3 Results 26.5 Conclusion References 27 An Energy Efficient Offloading Technique for UAV-Assisted MEC Using Nature Inspired Algorithm 27.1 Introduction 27.2 Models and Notations 27.2.1 Notations 27.2.2 System Models 27.2.3 Energy Usage Model 27.3 Problem Formulation 27.4 Proposed PSO-Based EEFOUM Algorithm 27.4.1 Initialization of Particle 27.4.2 Fitness 27.4.3 Velocity and Position 27.5 Implementation Results 27.6 Conclusion References 28 Trajectory Planning and Data Collection of UAVs Over Disaster a Affected Areas 28.1 Introduction 28.2 Literature Survey 28.3 System Model 28.4 Problem Formulation 28.5 Proposed Work 28.5.1 Initialization and Chromosome 28.5.2 Fitness 28.5.3 Mutation and Crossover 28.6 Simulation Results 28.7 Conclusion References 29 Hand Gesture Recognition on Skeletal Data Using Multi-head Neural Network 29.1 Introduction 29.2 Literature Review 29.3 Proposed Architecture and Working 29.4 Dataset 29.5 Experimental Setup 29.6 Results 29.7 Conclusion References 30 Ship Detection from Satellite Images with Advanced Deep Learning Model (Single Shot Detector (SSD)) 30.1 Introduction 30.2 Related Work 30.3 System Model 30.3.1 Workflow of Ship Detection 30.3.2 TensorFlow 30.3.3 Convolution Neural Networks (CNNs) 30.3.4 Single Shot Detector 30.4 Results and Analysis 30.5 Conclusion and Future Work References 31 Abstractive Text Summarization for English Language Using NLP and Machine Learning Approaches 31.1 Introduction 31.2 Dataset Description 31.3 Literature Review 31.4 Methodology 31.4.1 Pre-processing Data 31.4.2 BiLSTM-Based Approach/1st Approach 31.4.3 RoBERTa-Based Approach/2nd Approach 31.4.4 DistilRoBERTa-Based Approach/3rd Approach 31.5 Results and Discussion 31.5.1 BiLSTM-Based Approach 31.5.2 RoBERTa-Based Approach 31.5.3 DistilRoBERTa-Based Approach 31.6 Conclusion and Future Scope References 32 Comparative Modeling of CPU Execution Times of AES and ECC-AES Hybrid Algorithms Over Mobile Cloud Environment 32.1 Introduction 32.2 Related Work 32.3 Description of Our Model 32.3.1 Scheme 1 32.3.2 Scheme 2 32.4 Experimental Analysis of Data 32.4.1 Scheme 1 32.4.2 Scheme 2 32.5 Comparison of Models 32.5.1 Comparison Between Scheme 1 and 2 Based on Hybrid Algorithm. 32.5.2 Comparison Between Scheme 1 and 2 Based on AES Algorithm 32.5.3 Comparison Based on Scheme 1 Between Hybrid and AES Algorithms 32.6 Conclusions References 33 A Multi-view Representation Learning Approach for Seizure Detection Over Multi-channel EEG Signals 33.1 Introduction 33.2 Related Work 33.3 Description of Dataset 33.4 Proposed Approach 33.4.1 Considered Experimental Data of CHB-MIT 33.4.2 Preprocessing of EEG Data 33.4.3 EEG Data Segmentation 33.4.4 Deep Learning Model 33.4.5 Model Evaluation 33.5 Experimental Setup 33.6 Performance Evaluation Criteria 33.6.1 Accuracy 33.6.2 Recall (Sensitivity) 33.6.3 Specificity 33.6.4 F1-Score 33.7 Results and Analysis 33.8 Conclusion and Future Scope References 34 Machine Learning Approach to Analyze Breast Cancer 34.1 Introduction 34.2 Background 34.3 Model Design and Methodology 34.3.1 Dataset Description 34.3.2 Diagnosis Model 34.4 Implementation Aspects 34.4.1 Results 34.4.2 Discussion 34.5 Conclusion References 35 A Hybrid Adaptive Image Retrieval Approach by Using Clustering and Neural Network Techniques 35.1 Introduction 35.2 Prerequisite 35.2.1 CBIR Architecture 35.2.2 Image Similarity 35.2.3 Relevance Feedback 35.2.4 Texture Representations 35.2.5 Back Propagation-Based Neural Network (BPNN) 35.3 A Hybrid Adaptive Approach for Content-Based Image Retrieval Method 35.4 Results 35.5 Conclusion and Future Scope References 36 2D Convolutional LSTM-Based Approach for Human Action Recognition on Various Sensor Data 36.1 Introduction 36.2 Literature Survey 36.3 Methodology 36.3.1 Architecture Overview 36.3.2 Pre-processing 36.3.3 Exploratory Data Analysis (EDA) 36.3.4 Segmentation 36.3.5 Feature Extraction and Classification 36.4 Results and Discussions 36.4.1 Dataset 36.4.2 Evaluation Metrics 36.4.3 Comparative Experimental Results 36.5 Conclusion References 37 FCPSO: Evaluation of Feature Clustering Using Particle Swarm Optimization for Health Data 37.1 Introduction 37.2 Related Works 37.3 An Overview of Particle Swarm Optimization 37.4 System Model and Problem Formulation 37.5 Proposed Framework 37.5.1 Preprocessing 37.5.2 Initialization of Population and Generation of Cluster 37.5.3 Fitness Computation 37.5.4 Update Position and Velocity 37.6 Data Observation and Simulation Results 37.6.1 Overview of Datasets 37.6.2 Simulation Setup 37.6.3 Simulation Results 37.7 Conclusion References 38 Geometric Representation of Obstacles Depth in a Partially Unknown Environment for Achieving Optimized Navigation by Mobile Robots 38.1 Introduction 38.2 Related Work 38.3 Methodology 38.3.1 Cubot as Customized Platform 38.3.2 Fused Sensor Data as Input 38.3.3 Graphical Approach of Path Planning 38.4 Experimental Analysis 38.4.1 Sensor Calibration 38.4.2 Sensor Fusion for on Path Obstacle Detection 38.4.3 Graph Theoretic Path Planning Using Fused Sensor Data 38.4.4 Data Derivation 38.5 Conclusion References 39 Applied Picture Fuzzy Sets to Smart Autonomous Driving Vehicle for Multiple Decision Making in Forest Transportation 39.1 Introduction 39.2 Terms of Picture Fuzzy Sets 39.3 The Proposed Method 39.3.1 Distance from the Vehicle to the Location of the Signal Lights or the Nearest Obstacle 39.3.2 The Angle Created by the Current Direction of the Vehicle with the vehicle’s Next Direction 39.4 Case Study in the Proposed Method 39.4.1 The Status of the Signal Lights in Direction of the Vehicle 39.5 Conclusions References 40 Handwritten Mathematical Character Recognition Using Machine Learning and Deep Learning 40.1 Introduction 40.2 Literature Survey 40.3 Proposed Work 40.3.1 Data Set 40.3.2 Classification Algorithms and Implementation 40.4 Results and Discussion 40.5 Conclusion and Future Scope References 41 A Comparative Analysis of Sentiment Analysis and Emotion Detection Problems on Texts 41.1 Introduction 41.2 Related Works 41.3 Methodology 41.4 Experiments 41.4.1 Dataset Annotation Experiments 41.4.2 Machine Learning Experiments 41.5 Result and Analysis 41.5.1 Relation Between Sentiment and Emotion 41.5.2 Machine Learning Experiment Analysis 41.6 Conclusion and Future Work References 42 Transfer Learning-Based Advanced Deep Learning Architecture for the Identification of HIV-1 Integration Sites Using Imbalanced Dataset 42.1 Introduction 42.2 Literature Background 42.2.1 HIV Integration Site Detection 42.2.2 VGG19 42.3 System and Methods 42.3.1 Experimental Setup and Dataset Specifications 42.3.2 Transfer Learning 42.3.3 Encoding 42.3.4 Convolution Neural Network 42.3.5 Proposed Model for Predicting the HIV IS 42.4 Results and Discussion 42.4.1 Results 42.4.2 Analysis of the Results 42.5 Conclusion and Future Scope References 43 Optimal Evacuation Planning Using Integer Programming 43.1 Introduction 43.2 Model Framework 43.3 Problem Formulation 43.4 Drawbacks/Challenges 43.5 Conclusion References 44 Automatic Speech Recognition Analysis Over Wireless Networks 44.1 Introduction 44.2 Background 44.2.1 Voice Over IP System 44.2.2 VoIP Codecs 44.2.3 Automatic Speech Recognition 44.3 Methodology 44.4 Experiment Results 44.5 Conclusions References 45 Entropy-Based Clustering for Subspace Pattern Discovery in Ordinal Survey Data 45.1 Introduction 45.1.1 Types of Survey Data 45.1.2 Challenges in Survey 45.1.3 Entropy and Clustering 45.2 Background and Related Work 45.3 The Proposed Methodology 45.4 Experimental Results and Discussion 45.4.1 Dataset 45.4.2 Results 45.4.3 Discussion 45.5 Conclusion References 46 AlexNet Model for Sign Language Recognition 46.1 Introduction 46.2 Proposed Design Methodology 46.2.1 CNN 46.2.2 AlexNet Architecture for SLR 46.3 Experimental Result 46.3.1 Dataset 46.3.2 Simulation Results and Analysis of Segmentation Approach 46.3.3 Performance Evaluation 46.4 Conclusion References 47 An Improved Query Similarity Model for Online Health Community Forum Using Cross-Attention Mechanism on Siamese Network 47.1 Introduction 47.2 Related Work 47.3 Methodology 47.3.1 Dataset 47.3.2 Query Similarity Model Using Siamese Network with Cross-Attention Mechanism 47.4 Experiment and Results 47.5 Conclusion and Future Direction References 48 COVID Detection Using Chest X-ray Images Using Ensembled Deep Learning 48.1 Introduction 48.2 Related Work 48.3 Research Approach 48.3.1 Data Collection Phase 48.3.2 Data Preprocessing Phase 48.3.3 Model Used Phase 48.3.4 Ensemble Model for Features Extraction Phase 48.3.5 Implementation and Training Phase 48.4 Result and Analysis 48.4.1 Performance Evaluation of Model 48.5 Conclusion and Future Scope References 49 Robot Motion Path Planning Using Artificial Bee Colony Algorithm 49.1 Introduction 49.2 Artificial Bee Colony Algorithm 49.2.1 Initialization Phase 49.2.2 Employed Phase 49.2.3 Onlooker Phase 49.2.4 Scout Phase 49.3 Navigation Architecture 49.4 ABC Algorithm Robot Motion Path Planning 49.4.1 Initialization Phase 49.4.2 Scout Phase 49.4.3 Employed Phase 49.4.4 Onlooker Phase 49.5 Simulation Observation and Results 49.5.1 Unbranched Path or Linear Path 49.5.2 Branched Path or Nonlinear Path 49.6 Conclusion References 50 Predicting the Tomato Plant Disease Using Deep Learning Techniques 50.1 Introduction 50.2 Literature Work 50.3 Research Methodology 50.4 Results 50.5 Conclusion References 51 Tracking of Lost Objects Using GPS and GSM 51.1 Introduction 51.2 The Overall System 51.2.1 Architecture 51.2.2 Components 51.2.3 Prototype 51.3 Algorithm 51.4 Results 51.5 Conclusion References 52 Decentralization of Car Insurance System Using Machine Learning and Distributed Ledger Technology 52.1 Introduction 52.2 Literature Survey 52.3 Proposed Methodology 52.3.1 Overall CIAS Architecture Design 52.3.2 Machine Learning Model to Detect Damages 52.3.3 Implementation of Blockchain Technology 52.4 Future Work 52.5 Conclusion References 53 Heart Disease Detection from Gene Expression Data Using Optimization Driven Deep Q-Network 53.1 Introduction 53.2 Literature Survey 53.2.1 Challenges 53.3 Proposed Methodology 53.4 Heart Disease Detection Using Deep Q-Network 53.4.1 Training Procedure of Proposed PDHO Algorithm 53.5 Results and Discussion 53.6 Conclusion References 54 Learning-Based Scheme for Efficient Content Caching in Vehicular Networks 54.1 Introduction 54.2 Related Work 54.3 System Model 54.3.1 Caching of Content 54.3.2 Delivery of Content 54.3.3 Problem Formulation 54.4 Learning Automata-Based Content Caching 54.4.1 Proposed Algorithm 54.5 Performance Evaluation 54.5.1 Simulation Environment Set-up 54.5.2 Overall Performance 54.6 Conclusion References 55 Adaptive Resource Allocation in WiMAX Networks for Improved Quality of Service (QoS) 55.1 Introduction 55.1.1 Related Work 55.2 2-Level Scheduling Algorithm 55.2.1 Level-1 Scheduling 55.2.2 Level-2 Scheduling 55.3 Simulation Results 55.4 Conclusions References Author Index