دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Xiaoling Hu
سری:
ISBN (شابک) : 0128149426, 9780128149423
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 270
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Intelligent Biomechatronics in Neurorehabilitation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیومکاترونیک هوشمند در توانبخشی عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Intelligent Biomechatronics in Neurorehabilitation Copyright Contributors Preface Part I: Neural coding mechanisms 1. Toward bidirectional closed-loop brain–machine interfaces (BMIs): a summary on invasive BMI research in China Introduction BMIs on nonprimates Neural decoding in rodents Neural coding of sensory information using brain stimulation Portable system for neural stimulation and recording BMIs in non-human primates Neural data reduction and decoding models Grasp decoding and neural prosthesis control Pilot studies in clinic research Prosthesis control using human ECoG BMI Closed-loop BMI for seizure detection and inhibition Conclusion Acknowledgments References 2. Neural decoding by invasive electrocorticography Introduction Experimental paradigm and data collection Participants and implantation Cortical mapping Behavioral tasks Neural signals and behavioral data recording Hand gesture encoding within ECoG Data analysis and channel selection Feature extraction Decoding performance evaluation Channel selection strategies Results Time–frequency analysis and decoding performance Channel selections and anatomical patterns Decoding performance using nearest-neighboring channels Rapid decoding of hand gestures with recurrent neural networks RNN-based hand gesture recognition Feature extraction Recurrent neural network-based gesture recognition Results Feature analysis Performance of gesture recognition Model selection Comparison with other methods Rapid recognition Conclusion References 3. Neural coding by electroencephalography (EEG) Introduction Novel signal processing methods for few EEG electrode-based neural decoding Spatial filter for improving signal-to-noise ratio Bipolar derivation Laplacian derivation Subject-specific channel selection for individualized recording setup Time–frequency analysis for extracting CSMR Remaining challenges and future directions References 4. Electromyography (EMG) examination on motor unit alterations after stroke Introduction Complex neuromuscular changes demonstrated by interference surface EMG analysis Motor unit loss after stroke Motor unit control property alterations after stroke Remodeling of surviving motor units after stroke Significance and future perspectives Funding statement References 5. Automatic analysis of segmentwise locomotion details of Drosophila larva Introduction Related work Automatic behavior analysis Pose estimation Method Problem formulation Cascaded regression model for larval segment endpoint localization Explicit shape regression-based endpoint location Learning framework Segment endpoint locating method Rotate image Split dataset Regression-based method Result Dataset Dataset property Error metrics Experiments Conclusion Acknowledgment References Part II: Biomechatronic Systems Integrated with the Human Body 6. Bionic robotics for post polio walking Background Current status of individuals with poliomyelitis Robotic knee orthosis design Thermal plastic mold KAFO Sensory system Electromechanical lock knee joint Actuation system Control algorithm Training program Case description Don and doff Sit-to-stand Walking preparation Level ground walking Turning Slope walking Kerb crossing Outdoor walking Method Clinical performance Outcome measures Clinical assessments Gait analysis Results Discussion Conclusion Acknowledgments References 7. Voluntary intention-driven rehabilitation robots for the upper limb Introduction Methodology Participants Experimental platform Experimental procedure The dynamics of the robot Gravity compensation strategies An EMG-based control strategy Data analysis Results Discussion Conclusion References 8. Artificial sensory feedback for bionic hands Introduction Sensors Interfaces with the peripheral nervous system Targeted sensory reinnervation Electrical interfaces with the somatosensory nerves Perceptual effects of nerve stimulation Functional tests Biomimicry Embodiment, phantom pain, and patient acceptance Lower limb prostheses Interfaces with the central nervous system Somatosensory cortex Electrocorticography Intracortical microstimulation Perceptual effects of brain stimulation Functional tests Conclusions References 9. Robotic and neuromuscular electrical stimulation (NMES) hybrid system Introduction EMG-driven NMES-robots EMG-driven NMES-robotic hand EMG-driven NMES-robotic sleeve Clinical trials Early stroke UE rehabilitation by the EMG-driven NMES-robotic sleeve Application of the EMG-driven NMES-robotic hand in chronic stroke Comparison of different joint-supportive schemes in chronic stroke Conclusion References 10. Soft robotics for hand rehabilitation Introduction Materials and methods Actuators design and fabrication Actuator characterization Cable drive system User intent detection Results Conclusions and future trends References Part III: Clinical Applications 11. Clinical evaluations with robots in rehabilitation Introduction The ACT-3D robotic device Quantifying improvements in shoulder/elbow performance following an intervention Progressive abduction loading therapy Measuring improvements in reaching distance and velocity on a robotic device Data analysis Results Quantifying cortical reorganization related to the hand and arm following an intervention ReIn-Hand intervention Measuring cortical activity on a robotic device Data analysis for cortical activity Results Conclusions References 12. Quantitative evaluation Introduction: the need for quantitative outcome measures Electrical impedance myography (EIM) EIM measurements during muscle contraction Application of EIM in spinal cord injury Muscle spasticity Myotonometer—validity Myotonometer—reliability Interpretation of myotonometric data Ultrasound imaging Muscle architecture changes induced by intervention Conclusion References 13. Automation in neurorehabilitation: needs addressed by clinicians Conventional approach in cognitive rehabilitation Cognitive functional evaluation Neurofunctional approach Human elements in the cognitive rehabilitation Types of cognitive assessments Computerized cognitive assessment Examples of computerized assessment Technology-enhanced cognitive assessment using a physiological signal (quantitative electroencephalography and eye tracking) Automation in QEEG Eye tracking Virtual reality Automation in functional home-based rehabilitation The way forward—developing the automation system for a cognitive rehabilitation program References 14. Translation of robot-assisted rehabilitation to clinical service in upper limb rehabilitation Background The EMG-driven robotic hand Clinic versus laboratory The clinical setting The laboratory setting Participants Training protocol Rehabilitation outcome Outcome evaluations and statistics Functional achievement after training Discussion Conclusion Acknowledgments References Part IV: Commercialization 15. Commercialization of rehabilitation robotics in Hong Kong Correct time (government contribution) Correct place (government contribution) Correct person 1 (government, academia, and research contribution) Correct person 2 (industrial contribution) Correct person 3 (industrial contribution) Importance of a market-oriented approach Transfer of technologies/knowledge Key factors for successful commercialization Balance of market demand and technologies Identification of application sectors Find a key opinion leader (KOL) Financial support Company structure and management complexity R&D team Clinical team Marketing team Prototyping team Regulatory team Industrialization team Managing start-up and project commercialization Finale Index A B C D E F G H I J K L M N O P Q R S T U V W Y Back Cover